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Abstract. We introduce a modified Beckeréling system of equations which models the
nucleation of two types of cluster from the same monomer. This competitive nucleation system
is then studied in the coagulation-dominated asymptotic regime where a succession of timescales
is identified through which the system passes, and in which the cluster distribution profile is
described. The system is then subjected to a coarse-grain rescaling leading to a low-dimensional
system of equations for macroscopically observable guantities. This system is also solved in
the coagulation-dominated regime. Examples of the full system and the reduced system are
solved numerically to show the similarities in the behaviour exhibited by their respective solutions.
This study has applications to experiments involving crystallization where various morphologies
of growing crystals are observed, and to protein crystallization, where gels and/or amorphous
material precipitate out of solution simultaneously with crystals. We highlight how some aspects
of observed phenomena may be determined by the kinetics of the process rather than by the relative
thermodynamical stability of the two cluster types allowed within the system.

1. Introduction

In recent years, the Becker8bing equations [3] have been generalized in a variety of ways
and applied to many areas: from colloid chemistry [2,5, 6], nucleation theory [14,15] to RNA
chain formation in the prebiotic world [16] and more general polymerisation reactions [1]. In
this paper we generalize them with the aim of constructing a model of competitive nucleation,
where two distinct types of cluster can be formed from the same basic monomer.

The problem of which morphology of crystal results from a crystallization experiment in
which various types of crystal can be formed is a problem which has yet to be fully resolved.
Experimentally, it is known that it is not necessarily the most thermodynamically stable form
which nucleates first. Various explanations for this have been put forward, such as finite size
effects [9], which can reverse the stability predicted by thermodynamic limits.

The approach adopted here is a generalization of an approach suggested &lyakgh
We propose a thermodynamically consistent kinetic model which permits an equilibrium
solution, and is sufficiently simple that properties of the solution at intermediate times can
also be found. Whereas the Becket¥Dg-style model proposed by Kaet al only allowed
one type of cluster to form, we propose a model which allows two distinct types of cluster to
form simultaneously. These could be two morphologies of crystal, or one of crystal and one
amorphous or gel.

Initially we analyse the full problem in the aggregation-dominated limit. This builds on
work in [18] where the standard Beckeréfing equations were analysed. The approach
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enables the sequence of timescales over which the process occurs to be identified, and
approximate cluster distribution functions to be found for the times where one mechanism
takes over from another as being the rate-determining step. However, much of the temporal
evolution of the system remains unsolved, so an alternative approximation is used—namely
the coarse-graining method. This method has been used in various applications [5, 7, 15], and
has recently been analysed in more detail [7,17,18] in an attempt to assess its accuracy and
validity. Using this method we uncover more of the kinetics of the process and are able to gain
leading-order solutions for measurable macroscopic quantities.

In the remainder of this section we review the Beckeayribg system of equations and
quote its basic properties. We give a brief summary of the coarse-grained reduction method
which will be generalized later in the paper. Section 2 introduces a new model for competitive
aggregation which is the principal subject of study in this paper. Due to the complexities of
the new model—both in its nonlinearity and nonlocality—a general solution is not available.

In section 3 an asymptotic solution is derived which demonstrates some of the phenomena
describable by the new system of equations. Results from a numerical solution of the
problem are also presented, confirming the validity of the asymptotic solution. An alternative
approximate solution method is derived in section 4, where a coarse-graining procedure enables
the passage from a microscopic model to a macroscopic one. This much simpler system
is analysed in section 5 using dynamical systems theory, where asymptotic and numerical
solutions are compared. The results are discussed in section 6.

1.1. Review of the Becker8king equations

Our model is based on the Beckemiihg system of equations for the growth of clusters.
This system uses the concentrations of clusters of each aggregation nujrdsedépendent
variables¢, (r). The only mechanism by which clusters can grow or fragment is by the gain
or loss of a single monomer at a time. Thus, if we represent a cluster of biz€,., we only
allow reactions of the form

C,+C1 = Ca1. (1.1)

The forward reaction is assumed to occur at agatand the reverse at rabg;,. We shall use
the form of equations in which the total mass, or density, of material

o0
Q = Z rcy (12)
r=1
is constant. The kinetic equations for the concentrations are then
C.'r = Jr—-1— Jr (r > 2) (13)
Jr =a,cc1 — br+lcr+l (14)
G=-h-Y J. (1.5)
r=1

As well as the conserved quantity (1.2), this system of equations has the physically relevant
property of having a unique equilibrium solution, which we shall write,as: Q,c}, where
0, is the partition function derived from the forward and backward rate coefficients by

ar Qr = br+1Qr+1 Ql =1 (16)
Also, there is a Lyapunov function

V= 20 (Iog ( ;) - 1) (1.7)
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provided this is bounded below. The existence of this function ensures that the equilibrium
solution is approached regardless of the initial conditions specified. Finally, there is a weak
form of the differential part of the system: for any sequefig¢ ,, the identities

[} o0

Zgrc.'r = Z(gr+1_gr _gl)Jr (18)
r=1 r=1

hold. We shall require that these properties are maintained in any modification we make to the

system of equations.

1.2. The coarse-graining process

The above system can be coarse-grained to obtain a set of equations which model the same
process on a larger-scale. This process is algorithmic in nature, and leads to a system of
equations with a similar structure to the original system. Eliminating the concenttation

from J, andJ,+, leads to

2
ar+1c1Jd, + br+lJr+1 = a,ar+1Cr+1C1 — br+lbr+2cr+2 (19)

and we define this quantity to be the flux from clusters of sit@ sizer + 2. This allows us
to eliminatec,.; from the system of equations. Such a procedure can be generalized so as to
retain only one third, one quarter, or an arbitrary fraction of the dependent variables present in
the original system.

We introduce a ‘mesh functiom,, to represent the-values of retained cluster sizes. Thus
new concentration variablgs, }>2 ; denote the concentratiofts,, }32 ;, and the concentrations
of all other cluster sizes are eliminated from the system. In forming the coarse-grained model,
we assume that all concentrationswith A,_1 +1 < r < A, are equal tacy, = x,. In
general, the mesh spacing = A,+1 — A, can be allowed to vary with aggregation number,
so that a non-uniform grid can be used to investigate some size ranges in more detail than
others. However, for simplicity, here we shall use a uniform mesh in whjck (n —1)A +1.
Note that, whatever mesh is chosen, one never eliminates the monomer concentration. This
procedure leads to the system of equations

-).Cn =L,1—-L, (I’l = 2)

s
Ln = 0pXpXqy — ,Bn+1xn+l

00 (1.10)
X1=—ALy— Y AL,
n=1
Here, the new coefficients,, 8, are given by
oy = TaA”aAnﬂ QA1 ,3,,4.1 = TbA“+]_bA”+2 . bA"ﬂ. (111)

The constantT is included in both forward and backward rates since, as noted in [18],
for maximum accuracy the contraction procedure should be accompanied by a change of
timescale. Alternatively, including a change of timescale in the derivation of the new system
of equations (1.10) from (1.3)—(1.5) allows the consfanb be scaled out.

The partition function (1.6) carries over to the modified system, @ith satisfying both
0O, = 1 anda,Qn, = Bus104,,,- This induces the equilibrium solution, = Q,,x",
which agrees with the equilibrium solution of the original system= c,, .

The new system (1.10) also has a conserved quantity which corresponds to density. Since
the aggregation number of a particle represented,big A,, its mass is also proportional
to A, and there are. of such cluster sizes in,, the density of the reduced system is then
0 = x1+ Y 0 ANx,. The functionV = xq(logx; — 1) + > 07, Ax,(log(x,/Qa,) — 1)
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Figure 1. Diagrammatic summary of the model of competitive nucleation.

qualifies as a Lyapunov function under the same conditions as (1.7). Finally, for any sequence
{hn}yZy

oo o0
Dty = (hy — My — 32h)La+ Y (hyss — hy — Ah1) L. (1.12)
n=1 n=2

Thus, the reduced system shares the same physically relevant properties as the original system.

Note, however, that the coarse-graining has accentuated the nonlinearity in the flux term of the
new equations (1.10).

2. Proposed model

The model we propose allows two types or morphologies of clusters to form; the first, we shall

denote byCX and the other by}, both form from the same monome€;. Thus the reactions
we allow are of the form

X . X Y _. Y
Cl+C1=Cly C +C1=C . (2.2)
Letting lower case variables denote concentrations, the kinetic equations are
- X X X X X X X X
¢ = Jr—l - ‘]r Jr =4a,c¢ . c1— br+lcr+l
Y Y Y Y Yy Y Y Y
¢ = Jr—l - Jr Jr =4a,c 1 — br+lcr+l
0 (2.2)

o=—JX—Jf —i],x A
r=1 r=1

wherec), ¢! represent the concentration of clusters of typé respectively, and X, J¥ are

the mass fluxes of material from aggregation numtier- + 1 in each morphology. No cluster

can change morphology froti to Y or vice versa; the only way mass can change from one

form to the other is by the stepwise break-up of one cluster entirely into monomers (which

have no morphology) and the subsequent reaggregation of monomers in the other form.
This system possesses the same four special properties as the original set of equations:

e A conserved quantity, which we refer to as the density of the system

o0
0 :c1+Zr(ch+c:/). (2.3)
r=2
e A unique equilibrium solution

g =0'c T =0/ (2.4)
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where theQX, QY functions are partition functions for the two types of cluster; they
satisfy

01 =1 01 =1 a’ Q) =b%1070 a; Q) =b/10/41. (2.5)

The partition functions can be related to the chemical potentials of the cluster

morphologies; the chemical potential of clusters of sizand morphologyX, Y is
respectivelyuX, u’ where

pu) = ° +kTlogc) u = e +kTlogc! (2.6)
respectively, and the chemical potential of monomergis= u + kT logc;. At
equilibrium, ¢X = 0Xc;, ¢ = QYcy, n¥ = rpuas = 1. Now, choosing a reference
point in whichu$ = 0 implies

uX® = —kTlog Q¥ n'® = —kTlog Q. (2.7

e A Lyapunov function

V = ci(loge —1)+§:CX(IO (Cf()—l)nf(m (i>—1> (2.8)
= c1(logc1 2, p g ox . g 07 . .

r r
This decreases with time and corresponds to the free energy of the system.
e A set of identities; for a set of numbergi({g), g/1°°,)

oo [e ]
grert > (gF el +grey =3 (eX - g — eI+l — gl — ). (2.9)
r=2 r=1

To summarize, we have generalized the Beckériiy equations to allow for different
morphologies of cluster to grow from a single type of monomer. The new system is effectively
two Becker—ring systems coupled together through a more complicated equation for the
monomer concentration. This combined system retains the useful structure of the original
Becker-®ring model, having a unigue equilibrium solution, conservation of density and
having a well-defined Lyapunov function (free energy) which guarantees convergence to the
equilibrium solution whatever initial conditions are imposed on the system.

The model allows the two morphologies to have different growth and fragmentation
rates. These rates are typically size dependent, the aggregation rates having the form
aX = a¥r17Vd q¥ = a¥r1-Y4in cases where aggregation is surface-limited-aimensions.

The fragmentation ratds’, b! then depend on the relative stability of different cluster sizes;
free-energy arguments can be used to deduce the shape of the partition fur@fion!,

and then (2.5) used to work back &, Y. In many crystal growth scenarios it is known

that there is a critical size, below which clusters are unstable and tend to fragment, and above
which clusters tend to grow. These scenarios can be modelled by a chemical potential which is
dependent only on bulk energy and surface energy, leading to a partition function of the form
kT log Q, = v(r — 1) — o (r — 1)%/3, for example ¢ being the coefficient of bulk energy aad

that of surface energy). However, such choices for the rate constants lead to equations which
are only solvable numerically, a full general solution of the system (2.2) not being possible
to find. So, here we consider a simpler example where both growth and fragmentation rates
are size independent. In particular, we analyse the aggregation-dominated case with constant
coefficients, whereX = 1,a" = a, b¥ = ¢ andb! = be. Inthe case « 1, a solution is
available through the use of matched asymptotic expansions: we expect the solution to pass
through various timescales, initially fragmentation will not influence the system, but at later
times this effect will become relevant.

There is interesting behaviour associated with this exampée>Ifl then we expect more
clusters of type’ to form than of typeX, whereasifi < 1 thenthe reverse will occur. However,
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Table 1. The six ranges fa#, b determining which morphology dominates the system initially and
at equilibrium.

Parameters  Initial nucleation Equilibrium configuration

a>b>1 Ydominatesinitially Y dominates at equilibrium
a>1>b Ydominatesinitially Y dominates at equilibrium
b>a>1 Y dominatesinitially X dominates at equilibrium
b>1>a X dominates initially X dominates at equilibrium
1>a>b X dominatesinitially Y dominates at equilibrium
1>b>a X dominatesinitially X dominates at equilibrium

the morphology which dominates at equilibrium depends on whetheb ora < b, typeY
dominating in the former case and tyjien the latter. At this level of description there are six
combinations of parameters which can occur, as described in table 1. Lines three and five of
this table are the most interesting, for in these cases one morphology of cluster is predominant
at the start of the process but is more prone to fragmentation, so at later times the other type
of cluster dominates. In these cases especially, the timescale and manner in which matter is
transferred from one morphology to the other is of great interest.

3. Weak fragmentation case

In this section we aim to solve the problem outlined above, using matched asymptotic
expansions to find the various stages through which the system proceeds as clusters are formed,
as well as to determine the leading-order solutions.

With aX = 1,a) = a, b} =&, b} = be, the problem can be formulated as

X _ X X X X Y _ Y Y Y Y
Cp =cCp_qc1—&C. —crc1tecyy ¢, =ac,_qc1 —bec, —ac, c1+bec,
oo oo (o] oo
i 3.1
¢1=¢ecy +bech —cZ —act+e E C:(+1+8bg c,.y+1—clg crx—aclg cr. (3.1)
r=1 r=1 r=1 r=1

For this systempX = 17", Q¥ = (be/a)*~". The initial conditions we are primarily
concerned with are where all material starts in monomeric form,¢h@ = o, ¢X(0) =0 =
¢’ (0) for r > 2. However, our large-time asymptotic results will be more widely applicable,
to any initial conditions with sufficiently rapid decay in the langémit.

Clearly the case = b is a special case since then the shape of the equilibrium solution
for clusters of typesX andY will be the same. Other parameter values of interest will be
a = 1 # b—where the initial stages of nucleation will be identical (aggregation dominated)
but later will differ due to the different reverse reaction rate$. 3f ¢ > 1thenthe aggregation
of Y will initially be faster than that oX (due toa > 1) but later in the process we will expect
more clusters ok sincec; — ¢ and the cluster distribution function fat will decay more
rapidly thanX (sincea < b).

3.1.1 = 0O)

The first relevant timescale is where= O(1), where the fragmentation terms have no effect

at leading order. Over this timescale all concentrationgHdg, and evolve on the timescale

t = O(1), so the effects of fragmentation are ignorable at leading order. Such a simplification
means that exact explicit solutions are available—as was first noted for the standard Becker—
Doring equations by Brilliantov and Kravitsky [4].
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Thus, the system of equations we are concerned with is

dcX dc?

—=alg - ) - = cle g~ )

dr dr 3.2)
d 0 .
% =-2(1 +a)c§ - ;(cf + acf)

and we introduce a new timescale= f; c1(s) ds such thatl- = i% in order to remove the

nonlinearity from the problem. This yields the transformed equations

dcX dcY

i:c;{(—l_ci( i:c;’_l—cf

dr dr

des (3.3)

a9 —2(1+a)c;, — ;(cf +acf).

We introduce generating functions in order to solve for all the variahl®$>, and
{c!}2, simultaneously. We define

F(x,7) = ixfcj‘(r) G(x, 1) = ix’cf(r). (3.4)
The equations deterrr:iznin@(x, 7),G(x, 1) andclgj)2 are then

6;_‘: + (1= x)F = x2c1(c) (3.5)

aa—f +a(1—x)G = ax?ci(1) (3.6)

% +2(1+a)e; = —Fi(t) — aG1(7). (3.7)

Initially, we shall be concerned with the simpler system of three equationg;fam,
Fi(t) = F(,t) andG1(t) = G(, 1):

Fi(7) = c1(7) G(r) = aca(7) ci(v) = =2(L +a)ci(z) — Fi(r) — Gi(r) (3.8)

which form a closed system.

Taking the ratio of the first two equations yiel@s = a F; when it is noted that the initial
conditions implyG1 and F; are simultaneously zero. Now = Fj is used to construct a
linear constant coefficient ordinary differential equationfgr Imposing the initial conditions
F1(0) = 0 andc;1(0) = g Yyields the solution

c1 = pe T [cosh(r@) - (i/;) sinh(r@)} (3.9)
—7(1+a) —7(1+a)
Fi= % sinh(tv2a)  Gi= M‘*’T sinh(zv2a) . (3.10)

Now we are in a position to solve thedependent problem (3.5), (3.6). Now thatr)
has been found, these equations can be integrated to give the generating functions

2a—T _
Flr.t) = ox<“€e 1+a—+2a (e_t(“_*/z) _e)
2+/2a x+a—+2a

1+a+v2a\ vy e
- (x+a+\/2) © e N
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Glx.1) = Q\/ax2e—ar |:< a+l—+2a ) 71(17@) _ ey

22 ax+1—+/2a
_ a+l +V 2a 7r(l+«/2) _ eaxr) ) (312)
ax + 1 ++/2a

From these, it is now a simple matter to extrgttandc! by expanding them as Taylor series
in x. This yields

v o0& | (1+a—v2a 1 V7?2 & [—tla—2a)
Cr:z@[( a2 )( f) P
_(1+a+@>( > 2 $ r(aw—)]}
a++/2a a+\/_ = i!
Cyzgﬁe—ar [(a+1_@>< )’ i": [—1(1—+2a)]
’ 272 1-+v2a —V2a) 57 i!

_(at1+v2a ( )” = [—r(L+V2a)) r<1+@)]
1+\/Z 1+\/_ i=r— l

This solution ceases to be valid when the monomer concentration drops to zero, this occurs at
T = 1. given by

(3.13)

1 1+a++2a
TC_Z\/Zlog(l+a—\/Z>. (3.14)

Ast — 1,1 — 0, and wherr; = O(g), other terms enter the leading-order balance, and a
new timescale is required. The second timescale is shiftdd log(1/¢) from the first. Since
T.teT2 d T.tTeT2 K d
¢ =/ i ~f '~ _Kloge+0() (3.15)
0 cl(r) K (Tc - 7:)
(for some®(1) constank). The constank is determined by AK = (— d‘1)|T ... hence

V1+aZ ((l+a) <1+a+\/2))
Xp log .

_ 3.16
o+ P\ 2vz N\ 1ra v (3.16)

Unfortunately, due to the complexity of(z) in (3.9), it is not possible to explicitly relate the
results (3.13), quoted in terms of back to the original timescale

3.2.t=Klog(1/e) + O

This timescale is defined by= K log(1/¢) + t, wheret, = O(1) and over this timescale
c1 = £Cy, with all other concentratior{gX }°° , and{c! }>° , remainingO(1). To leading order:
dcX dc? dC, > =

=0 L =0 ——= =X +bcd + X +bcl,)—C X +ach).
dlz dt2 dlz 2 2 ;( r+l r+l) 1 ;( r r)

(3.17)

Thus, all concentrations except that of the monomers remain constant, which implies the
equation governing’; is linear, so over this timescale the monomer concentration relaxes to
its pseudo-equilibrium value
tdet ,2p(c) +bef) ¢y +bey

dsa(cf Fac)) 3 Z,(cX +ac))
As t, — oo all concentrations are constant, and so the next timescale will be considerably
longer.

Ci—>C;

as t, —> oo. (3.18)
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33.t =0

Since the rescaled monomer concentration= c; /¢ tends to arO(1) constant at the end of

the previous timescale while all the other concentrations remain order one constants, we must
maintain these scalings, in the new timescale, and analyse the system over a longer timescale,
which is defined bys = e7. Thus, our governing equations are

def X X X, X
d = Cic,_y—Cic; —cp +ciq (3.19)
3

de¥
d_t; =aCic! | —aCicl — be! +bc?,, (3.20)

dc, _ X Y 2 2 c Y < X c Y - X
e qn = G2 +bcy —aeCy —eCy +chr+l + Zcrﬂ aClzcr Clzcr . (3.21)
3 r=1 r=1 r=1 r=1

At leading order, equation (3.21) implies that the monomer concentration remains in
equilibrium with the rest of the system at all times, tliljs= CI as given by (3.18). The other
equations, however, are not explicitly soluble.

To gain an intuitive understanding of the behaviour of the system over this timescale,
we investigate the temporal evolution of some macroscopic quantities associated with the
cluster distribution functions. We define new quantitiég(r3), Ny(r3) to denote the total
number of clusters of each type, and(#s), o, (13) representing the total density (mass) in
each morphology. These are defined by

Nx =icf Ny:icry 0, =ircrx o, =ircf. (3.22)
r=2 r=2 r=2 r=2

All these are time-dependent quantities, with the densities satisgyjng o, + c1 = o
independentoftime, although = O(¢) impliesthab = o, +o, atleading order. Using (3.18)
and (3.19), (3.20), the new quantities we have introduced satisfy the differential equations

d d
— Ny = —c& — Ny = —bc) 3.23
dtg X 2 dl‘g Y 2 ( )
d d

O — (€1 — DNy — ¢ O — (aCy— b)Ny — bel. (3.24)
drs dr3

Using the fact tha€ is given by(Nx +bNy +c5 +bch)/(Nx +aNy), (see (3.18)), the above
can be rewritten as

dQX _ (b—a)NxNy + bC%NX —aC%(Ny

= (3.25)
drs Nx +aNy Nx +aNy
do, _ (a — b)NxNy +ac§Ny—bc§NX' (3.26)
drz Nx +aNy Nx +aNy

In this form, it is clear that (3.25), (3.26) satisﬁ;(@x +0,) = 0 implying conservation of
density at leading order, as noted above.

Clearly (3.23), (3.24) do not form a closed system of equations, but they do help us
understand the dynamics occurring on this timescale. Since all terms from the original
equations now enter the leading-order balance, towards the end of this timescale we expect
a local equilibrium to become established in which clusters of small size equilibrate with the
monomer concentration. Thus, we expeftandc) to become small. Formally, equilibrium
is given bycy = eC%, andc) = aeC2?/b, but sincecy, ¢} are O(1) over this timescale,
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at leading order we expeef, ¢y — 0 astz — oo. The dominant part of (3.18) is then
C1~ (Nx +bN,)/(Nx +aN,).

The main feature of (3.25), (3.26) is the transfer of mass from one type of cluster to
the other. Ifa > b then mass is passed fromto Y and ifa < b then the transfer is
in the opposite direction. The process by which this happens is the stepwise breakdown of
clusters into monomers, which then aggregate with existing clusters of the other morphology:
(3.23) implies no new clusters are formed. This transfer of matter occurs with the monomer
concentration remaining very small: the kinetics thus proceed very slowly. Since the monomer
concentration i€ (¢), and an®(1) amount of mass has to be converted, the process takes an
O(e~1) length of time—hence the current timescale. To find asymptotic approximations to
the shape of the cluster distribution function requires us to consider several cases separately
as follows.

3.3.1. Special casez = b. In this case, ag — oo differences in concentration between
clusters of similar size and the same morphology will be smoothed out. Thus the long-time
asymptotics of (3.19), (3.20) can be found by taking the continuum limit of the equations. We
denote solutions of the continuum equations:Byr, 1), c¥ (r, r). Equations (3.19), (3.20) are
replaced by

X 1 1 02X . acX
—=-(1+C)—5+1-C))— 3.27
T e T (3.27)
ac¥ 1 1 0% 0’

— =za(l+C +ta(l-C))—. 3.28
T R A e T (3.28)

In this caseC; — 1 astz — oo; later, we verify thaty +acy <« Nx + Ny, and hence show
that (3.18) implie<C; — 1. The equations farX, ¢ thus reduce to
dcX _ 32cX acY 3%c’

9c” _ 9%c” 9 _ 0% 3.29
otz a2 s a2 (3.29)

which have the similarity solutions

X KXre—r2/413 v KYre—rz/lkttg

- 3/2 ¢ = 3/2 (3.30)

I3 I3
for constantsk x, Ky. This solution can now be used to check tht+ ac} <« Nx +aNy,
sincecy, ¢} are bothO(1;*/%) asts — oo whereasNy, Ny = O(13"/%), henceC; — 1 as
mentioned above. One constraint on the const&rtsKy is conservation of density, which
yields the equatiok y +a*?Ky = ¢/2./7. The solution for! is obtained from the solution
for ¢X by replacingt with at. This impliesKy = Kx/a®?, henceKx = o/4/7 and
Ky = 0/4a%? /7.

3.3.2. General casez < b. Over this timescale the introduction of fragmentation into the
leading-order balance means that the stabilit}¥ afverY takes effect. Virtually all the mass
is transformed into th& -form, through the fragmentation &f-clusters providing monomers
which are then added to the population of growiglusters. The quantitg; remainsO(1),
being determined by (3.18), but decays due to the decay af, and changes ivVy, Ny.

At larger times, we expect the concentration of clusters with small aggregation numbers
to tend to their equilibrium configuration subject to the present monomer concentration. In
particular,c; — eC? andc} — eaC2/b, but since we are concerned withl, cJ = O(1)
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in this timescale, we expeef, c§ — 0 ast3 — oco. Thus, at larger times, the macroscopic
densitieg,, 0, are governed by

a Nx(Cy—1) :I_Z ~ Ny(aCy — b). (3.31)
Sinceo, (t3) + 0, (t3) = 0, dp, /dtz and @, /dt; must have opposite signs. Ths, must lie
between unity and/a > 1. The increase of the mags will be halted in the limitt; — oo
by C1 — 1; and to stop the consequent decrease, jrwe must haveVy — O.

In more detail, in the large-time limit the problem fdr reduces to the constant monomer

Becker—ring problem

% =acl | —bc! —ac’ +bc’ r=>=23) (3.32)
dt3 - r—1 r r r+l1 = .

d Y

—2 _ —bcy — achy +bc} (3.33)
dr3

the form of whose solution is known [18]: formally, this approaches the equilibrium
configurationt) = c1(a/b)" 1, over timescales af = O(1). Thisis formal since; = O(e),
so the equilibrium solution satisfies = O(e) for all », whereas in the current timescale we
have adopted the scalin§j = O(1). So, to leading order, allwe observels— 0astz — oo,
with new scalings becoming necessary whénreachesO(s). When the concentrations
¢ = O(e), their evolution is still on the timescalg = ¢t = O(1). Puttingc! = ¢C! with
CY = 0(1), we find the problem fo€ is

dCrY Y Y Y Y

. =aC,_; —bC, —aC, +bC, r>=2 (3.34)
with C; = 1, whichis subtly differentto (3.32), (3.33). This system approaches the equilibrium
configuration

a\'—1
c’=c (E> (3.35)
on thetrs = ¢t = O(1) timescale.
The solution fore® over this timescale, as faf’, is only available in the limit; — oo.
Here, (3.19) can be replaced by the continuum limit
acX 1 92cX acX
— ==(1+C)—5+(1—-C)— 3.36
o 2( 1) 5,2 ( 1) o (3.36)
since the long timescale allows differences in concentration to be smoothed out. Our
assumption thaf'; — 1 asrz3 — oo implies the advection term disappears and the resulting
purely diffusive problem has the similarity solution
X _ ere_r2/4t3

=7 (3.37)
I3

For large times, this agrees with the assumptiarfof> 0 asi; — oo atsmall-. Consideration
of the macroscopic quantities (3.22) implies the constgtis ¢/4./7. The long-time
behaviour of the distribution of -clusters is characterized by a single maximum in aggregation
space £) which moves to larger-values and spreads out as time progresses.

Finally, for consistency, we need to verify the underlying assumptionGhat> 1 as
t3 — oo. From (3.37), ags — oo, Nx ~ t; /* andcf ~ 173/2. Now c¥ asymptotes to
anO(e) constant; and in the large-time limit, the distributiohbecomeg(¢), and decays
rapidly enough inr for Ny to beO(e) also. Thus the dominant term in (3.18)r@s—> oo is

Ny, implying C; — 1 as originally assumed.
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Over this timescale, the greater thermodynamic stabilitX afver Y has taken effect,
with the consequence that there is little mass left in¥hform. However, the population
of X-clusters has not yet reached equilibrium, so kinetics now proceed over an even longer
timescale.

3.3.3. General casea > b. The analysis for this case follows the above general case
very closely, withX and Y swapping roles and the thermodynamic stability Yotbeing
manifest through the loss of nearly all of theclusters. We formulate the problem for
the timescales, but the resulting equations can only be solved in the lagdinit. The
monomer concentration, given by (3.18), decreases; as, becomeO(¢). At larger times,
b/a < C1 < 1, and (3.31) implies the growth pf at the expense @f, . In the limitrz — oo,
we thus expecf; — b/a < 1 with Ny — 0. These assumptions will be verified later.

The concentrationsX all tend to zero as; — oco. Their subsequent evolution to
equilibrium also occurs on thg = e = O(1) timescale with the scalingg® = ¢CX
andC¥* = 0(1) leading to

dcx b b

d—é = ;cj‘_l —-CcX - ZC,X +CX .. (3.38)
Thus ags — oo, ¢} — e(b/a)". Over large times, thE-distribution becomes slowly varying
in aggregation number), so the continuum limit

acY 1 2cY acY

— =—=(b+aC + (b —aCy)— 3.39

o 2( aCy) 52 (b —aCy) o (3.39)

can be taken. Sinoc€; — b/a, the advection term disappears enabling (3.39) to be solved by

the similarity solution

2
Yo M_ (3.40)
4,/7 (bt3)3/?
Thus in the large-time limit, the majority of mass is contained witHirin a single-peaked
distribution, the position of which moves to increasingly large aggregation numbers; there is
negligible mass in th&-morphology.

All that remains for us to do now is to verify the initial assumptions; namely to show thatin
the large-time limit, (3.18) implie€; asymptotestd/a. From (3.40), we havdy ~ z;l/z and
ey~ t3_3/2 in the large-time limit. We also havg becoming?(¢) over this timescale, as does
Ny, since all the:X approach equilibrium. Thus in the large-time limity dominates (3.18),
andCy — b/a.

34.t =02

At the end of the previous timescale, which ever subcase our system falls into, all the
concentrations became small, so the scalings in this timescale must take account of this. We
introduce the new scalings

cf =eC¥ ¢l =eC? t=¢"% (3.41)
to complement the existing = ¢C1.

3.4.1. Special casez = b. We have already seen that the scaled monomer concentration
C1 = c1/¢ approaches unity at the end of the previous timescale. In order to develop the
longer-time kinetics we need the next-order correction term

C1=1+¢¥2D,y (3.42)
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so thatey ~ ¢ +£%2D1(1a).

Over the previous timescale, there wasail) mass in bothX- andY-forms: the matter
in the system was spread over a wide range of aggregation numbers, each cluster size having
a small concentration. Our primary concern in this timescale is with asymptotically large
aggregation numbers, and in order to balance terms in the determining equations, we take
r = e~ Y2z with z = O(1). Since the concentrations vary slowly with aggregation number, it
is valid to take the continuum limit

acx  92cX acx
32‘4 = 8_Z2 B Dl(t4) 0z (3 43)
19C” a2cY acY '
;8_[4 = 8_z2 - Dl(IA)a—Z'
There is a simpler ‘inner’ region, for= O(1) characterized at leading order by the equations
0=CcX,-2c*+ck; 0=cr,-2cr+c?, (3.44)

with solutionsCX = 1+ (r — 1)Ksx, CY = 1+ (r — 1)K4y. At large, this must match with

the smallz solution of (3.43). In order to close the system of equations, we need to specify
D;. This is obtained by requiring density to be conserved. At leading order the density is
given byo = f0°° z(CX + CY)dz. Taking the time-derivative of this, and using (3.43), leads to

Dq(ty) = —-(1 +a)/ /Oc CX(z, ta) +aC¥ (z, ta)dz. (3.45)
0

The system (3.43) together with (3.45) cannot be solved for arbitydout the large-time
kinetics can be found. Ag — oo, the system converges to a time-independent state; in order
to satisfy the boundary conditionis®, C* — 0 asz — oo, this solution must have the form

CX — Kax exp(ﬁlz) CY — Kay exp(ﬁlz) D1 — 51 <0 as 13— oo.
(3.46)

This solution has three parameters still to be specified, Ky, D1. The first two are found

by matching the above solution to the ‘outer’ problem to the solution of the ‘inner’ discrete
problem. In order to match the solution of the inner problem (3.44) with the outer solution,
Kisx = 1 = K4y andKsxy = 0 = K4y. Finally, we are in a position to determine the
value of the final parameter from (3.4@);. Density conservation implieB; must satisfy

o= 2f0°° zexp(D1z)dz, giving D1 = —+/2/0 and hence the large-time asymptotic solution
is

c1=¢—¢¥2/2/0 cf=c'=¢ exp(—r\/2£/g) . (3.47)

3.4.2. General casez < b. Atthe end of the previous timescale, the numbeY aflusters
decayed, with the distribution aX-clusters being given by the similarity solution (3.37),
subject toc; = ¢Cy; = ¢. Here, in order to determine the-cluster distribution function
we shall again need the first correction term to the monomer concentration, which has the
form C; = 1 +¢¥2D,. Since the leading-order term @ does not alter over this timescale,
the solution (3.35) for th& -clusters remains valid throughout this timescale. Thus we only
consider theX-clusters in this section, the-clusters already being at equilibrium.

For X-clusters withO (1) aggregation numbers, the scalings (3.41) imply the governing
equations

0=CX,-2cX+cCkX, (3.48)

with solutionCX = 1 + (r — 1)K4x, WhereK,y is an arbitrary constant to be determined by
matching to the solution of the outer problem. Clearly this solution cannot be valid far all
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If Ksx < O then the concentration would become negative at some tam@yed if K4y > 0

then the density would be divergent. Thus there must be a larggion where other terms

enter the leading-order balance of terms in the governing equations. This can also be deduced
from the form of the similarity solution (3.37).

We continue to use the continuum limit, following its use at the end of the previous
timescale, but now need to find the cluster size where kinetics are occurring. Balancing terms
in the continuum equations yields= ¢~%2z with z = O(1) and

acx  y2cX b acx

at, 072 1(t4) 9z
The quantityD;(z4) is obtained by requiring the density to be conserved. The leading-order
contribution to the density comes from the outer region, whence the above scalings imply
o= f0°° zC¥(z, 14) dz. Taking the time derivative of this, and using (3.49), leads to

Di(ts) = —1 / / C¥(z, ta)dz. (3.50)
0

Unfortunately, systems such as this cannot be solved explicitly, but their large-time
behaviour can be found. Assumiiy — D1 asts — oo, we findCX = K4x exp(D1z), and
matching this solution in the limig — 0 to the solution of (3.48) in the limit — oo yields
Kax = 0 andK4x = 1. Conservation of density then gives = —1/,/0. Thus the solution,
over this timescale, tends to

g3/2 €
c1=&— — cF=e exp(—r\/i> (3.51)
Ve o

together withe! = ¢CY, whereC) is given by equation (3.35).

(3.49)

3.4.3. General casea > b. The leading-order kinetics which occur over this timescale

is the redistribution of mass within the-distribution from the similarity solution (3.40) to
equilibrium. The monomer concentration remains constant at leading order, which implies that
the distribution ofX -cluster remains constant also, and continues to be givef by e(b/a)"

since it was already in equilibrium with the monomer concentration at the end of the previous
timescale. In order to determine the evolution of theluster distribution, we need a higher-
order term in the monomer concentration, thus

C = é[1 + &2 Dq(10)]. (3.52)
a

For small cluster sizes), the leading-order determining equations €jr are
0=bCy ,—bCY —bCY +bC), (3.53)
together withC; = b/a, which are solved by} = b/a + Ky (r — 1). At largerr, however,

higher-order terms become relevant. Seeking a largegion where other terms enter the

leading-order balance leadsite= ¢ /27 with z = O(1), then
acY a2cY acY
—— =b——— —bD1(ty)—. 3.54
P 322 1(ta) 32 (3.54)

Here D, is determined by conservation of density¢ [, zC” (z, 14) dz), giving

D1(ts) = —b/a / CY(z, t4)0z. (3.55)
0

Unfortunately, a full solution cannot be determined, so we are once again forced to consider
only the large-time asymptotics of this timescale. At large times (3.54) imylies—
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(b/a)exp(D1z), with D, — D; < 0 ast; — oo. Equating the density of this solution

to o then impliesD; = —./b/ap. This outer solution matches correctly into the solution of
the inner problem withK,y = 0. This is the equilibrium solution of the entire system and
agrees with the equilibrium solution derived from the discrete equations, as will be shown in
the next section.

3.5. Equilibrium

Sections 1 and 2 discussed the form of the equilibrium solution for arbitrary choices of the
coefficientsa,, b,. Here, since we have fixed forms for these coefficients, we can be more
explicit about the equilibrium solution. We continue to use partition functions, now defining

them explicitly, by

X _ l-r Y <b8>l_r
0, =¢ 0, =|— . (3.56)

a
The monomer concentratian at equilibrium depends on the total density in the system.
Expanding the monomer concentrationcas= ¢C1(1 +¢? D7), we find an equation relating
the density ta:; from (2.3):

1 1

=¢eC1(1+&”D + . 3.57
o0 =¢eCq( & 1)|:(1—C1—EPC1D1)2 (1—%C1—%C181’D1)2:| ( )
An expansion of this expression in powerseofieldsg = O(e) unlessC; = 1 orCy = b/a.
Thus forO(1) values ofp, we expectC; to take on one of these values.

3.5.1. Special case = b. In the special case = b, the leading-order monomer
concentrationdy) can only tend t@ (that isC; = 1). Since the density is thef(s1~27), for
o = O(1) we must have = 3: the correction term is the®(¢*2). Thus we put

c1~ e(1+ Dq1/¢) (3.58)
which, with 0¥ = Q¥ = ¢! gives the equilibrium solutions ag = ¢! = e(1 + D1 /2)".
Equating the density in this equilibrium solutiondgields D, = —./2/¢ as the leading-order
solution of

_ 2(1+D1/e)(1+Die)

Q= Df
The solution is thugX = ¢’ = ¢(1 — /2¢/0)", which agrees with (3.47) in the large-
limit. All a-dependence has disappeared from this expression, as is to be expected for the
equilibrium solution, since corresponds to the timescale over which the concentrations of
Y-clusters evolve.

+&+ D%, (3.59)

3.5.2. General case < b. If a # b then there are two similar subcases to consider: (i)
a > b; (i) a < b. Inthis latter caseC; = 1, since ifC; = b/a then the concentration of
X-clusters is unbounded at large

Definingc; = & + D1e¥? with QX = ¢ and QY = (ae/b)}~" leads to

X =e(l+De)y o =e (g)r_l 1+ D1/e). (3.60)

Thus all concentrations are small, but those of typeecay much faster with increasing
aggregation number) than those of th&-type. The net effect is that the massirform is
only ae(2b — a)/(b — a)?, whereas the mass in theform is O(1), so that to leading-order
in & all mass is of theX-type andD; = —1/,/0.
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3.5.3. General case > b. The case: > b is handled in a similar manner, with the roles of
X andY reversed. Now; = be/a+O(£¥?), since ifc; = & + O(%/?) then theY -distribution
would diverge in the large-limit. The equilibrium solution is

O [ O [ IR
(3.61)

the majority of the mass ending up in tkeform.
Thus in all cases, the scalings are the same in magnitude, namelyO(e), but the
special case = b (3.58) is not simply a subcase of the general results (3.60) or (3.61).

3.6. Summary of results from asymptotic analysis

The asymptotic solution passes through four timescales. In the first, clusters of both types
grow at the expense of the monomer: this timescale ends when the monomer concentration
becomes small and thus slows the growth of clusters. There are no effects of fragmentation
in this timescale; many clusters form, the vast majority having relatively small aggregation
numbers—typically up to ten. In the second timescale, which is shifted to larger times, but as
fast as the first, the monomer concentration slows its decrease, and saturates at@(small (
size. This stabilization of the monomer concentration is due to the fragmentation of clusters.
However, since all other concentrations &r€l) fragmentation it is still small enough that it
does not alter the leading-order concentrations of the clusters; thus they all retain their values
from the end of the first timescale.

The third timescale is genuinely slower; fragmentation now affects the leading-order
cluster concentrations. Mass is passed from one cluster type to the other by the fragmentation
of clusters to monomers which are then used in the growth of clusters of the other
type. Clusters now grow to much larger sizes, and consequently the concentration of
any particular individual size becomes smaller. Throughout this process the monomer
concentration remain®(e), and there is a®(1) amount of mass to be transferred from
one morphology to the other through the monomeric form: thus we expect this timescale
to ber = O(s71), as indeed it is. The monomer concentration relaxes to its ‘quasi-
equilibrium’ value onO(1) timescale, thus can always be assumed to be at this value as
given by (3.18). Finally, there is an even longer timescale=( O(¢~2)) in which all
concentrations are smal®(¢)) and the cluster distribution converges to its equilibrium
shape.

3.7. Results from numerical solution of the full system

The full system of equations (3.1) has been solved numerically using a predictor—corrector
scheme with timestefp small enough to always satisfy< ¢/10; simulations for a variety of
parameter values have been carried out, and a range of stepsizes were tested to ensure that no
numerical artifacts were presentin the solution. Results for thexcasg.5,b = 5,¢ = 1072,

o = 1 are presented here. For this choice of parameter, gineel we expect clusters of

type Y to nucleate in greater abundance initially, but typéo dominate the system at later
times sincen < b. Figure 2 gives three snapshots showing the shape of cluster distributions
for both morphologies at the three times- 10,7 = 100 andt = 1000. Atr = 10, clusters

of type Y are seen to dominate!( > ¢X) at all aggregation numbers; at time= 100, type

X dominates at small sizesy{ > ¢} andci > ) but at all larger aggregation numbers
type Y is still predominant{’ > ¢X); and by timer = 1000, clusters of typ&l dominate
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Figure 2. Plots ofcX, ¢! against- at+ = 10, 100, 1000 for the case wita = 2.5, b = 5.0,
e =0.01,p =10.

the entire systemef < c¢X for all r). Thus, we observe typE dominating at small times,

due to its larger nucleation rate, but the greater thermodynamic stability ofxtypecomes
evident at later times. Thus, our initial expectations were correct: at intermediate times the
greater stability of clusters of typ¥ becomes evident firstly in small clusters and later in
larger clusters.

In figure 3 the monomer concentration is shown as a function of time on a log—log plot
along with the total number of clusters of each typé (z), Ny(¢)) and the mass in each
cluster morphologyd, (1), o, (¢)). The monomer concentration is seen to decay monotonically
throughout the process. Initially, all of the variablég, Ny, o,, 0, grow and saturate around
t =~ 1, with Ny(t) > Nx(¢) andp, (t) > o,(t). There then follows a fairly slow evolution
of the concentrations; this is the third asymptotic timescale (O(s~1)) over which mass
is slowly passed from one morphology to the other. The inequalities cease to be valid after
t ~ 200, whereNy < Ny andp, < g,. Around this switchover, botiVy andp, decrease,
whilst ¢, increases an&y fluctuates without growing much larger. Thus the average size
of X-clusters ¢,/Nx) increases in over this timescale. Equilibrium is reached after about
t = 10* = ¢2 as expected.

Figure 4 is a phase plane plot of againstp, the trajectory being parametrized by
starting fromp, = ¢, = 0 atr = 0. In the initial, fast, phase of the nucleation process:)
andp, (¢) increase in direct proportion to each other. This ceases®0.25,0, ~ 0.7 where
the nonomer concentration has become smal o — o, — 0, = O(¢) wheres = 0.01
andp = 1). The trajectory then turns a corner andcontinues to increase, albeit much more
slowly, and now with a corresponding reductiorpin(r), until equilibrium is achieved (where
0, =0 —0(¢)andg, = ea(2b —a)/(b — a)). The trajectory clearly follows closely the line
o, to, = 1, the distance below it being the monomer concentration. The dashed curve which
remains close to the origin is a plot &, againstNy; this also shows the distinction between
the first timescale where both types of cluster grow rapidly, and the later slow timescales where
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clusters of type” are broken up to release material for the growsglusters. Again we note
that in the later stages of the proceégs remains approximately constant and thus the growth
in the mass o -clusters ¢, ) is due to a growth in their size.
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Figure 5. Diagrammatic summary of the coarse-graining contraction applied to the full model of
competitive nucleation.

4. Coarse-grained contraction

Equations (2.2) are amenable to a coarse-graining contraction procedure similar to that derived
in other generalizations of the Beckemihg equations [15, 18]. In this case, we define two
coarse-grained grids with mesh spacings which may be non-uniform and are allowed to be
different for theX- and Y-clusters. We define the mesh for tiieclusters byA, and that
for the Y-clusters byg,. Since the monomer concentration cannot be eliminated from the
scheme, we specif{; = 1 = E;. The meshes are then defined by

Ap=m—Dr+1 E,=m—-DE+1 (4.1)
We eliminate all the concentration variable’ except those which correspondito= A,
and eliminate all the! except those correspondingite= E,. We then relabel the retained
concentrations by,X = ¢} ands) = cf . This procedure, with. = 3 and¢ = 4, is
summarized in figure 5. The monomer concentration in the original formulatignrust
be identical to that in the reduced scheme, thus= ¢;. The kinetic equations for the new
concentrations’, s¥ are then given by

n’"n
X _ 71X b X _ XX _ pX X
Sp = L,171 - Ln Ln =0, S, ‘;l - ﬂn+lsn+1
Yo Y Y Y _ Y Y Y ¥
Sp = Lnfl - Ln Ln =0, 8,5 — 13n+1sn+1 (4 2)
oo o0 .
X Y 27 X 27y
s1=—ALY —ELY =Y a°LY - > L)
n=1 n=1
where the constants’, o}, BX, BY are given by
X _ X, X X X X _ pXpX X b'
o, =T ay ay 4p---ay,., 1 Biv1 =T by, 1D, 42Dy, (4.3)
Y _ Y, Y ¥ Y Y _pYpY .y Y -
o, =T agag,q...dg,,,1 Buss =T bg bz - by,

and whereT X, TY represent constants. In the case of constant coefficients and a uniform
mesh, it has been shown in [18] that the optimum choice for the const&ntg? is

X a¥eq — bX TY a¥cqp — bY
M@y e — (0¥)] El(@ic; — (b1
but for an arbitrary mesh and size-dependent rate constants the best chdice 1or is not
clear.

The system of equations (4.2) can be shown to possess the same properties as the original
system; we simply quote the results here:

(4.4)
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e A unique equilibrium solution generated from the partition functign, Q¥, namely
X = Qﬁ?f 5, = QL 5;". The properties which enable the partition functions to

generate an equilibrium solution for the contracted system of equations as well as for the
full are

X X X X Y nY Y Y
oy QA,, = ﬁn+1QA”+1 oy QE,, = an+1QEn+1 (45)

together withQ} =1= Qf .

e A conserved quantity, referred to as the dengitys s1 + Y o ,(AA,sS +EE,s)).

e A Lyapunov function, V. = si(logs; — 1) + Y 2 {asX(log(s¥/Q%X ) — 1) +
gs) (log(sy /QL ) — D).

o A set of identities; for any pair of sequendgs}o ,, {1,}52, with g1 = Iy

n

gusi+ Y (8ndy +has)) = (g2 — M(h + Dg1) Ly + (hy — £(& + Dgn) Ly
n=2

[0¢] oo
+D (@t — g0 = M2OLY + ) (hper — hy = E2g0) L, (4.6)
n=2 n=2
Thus the coarse-grained contraction has been generalized to construct a mesoscopic or
macroscopic model from the original microscopic model derived in section 2.

4.1. Truncated system

In going from the full Becker—Dring system from equations (1.3)—(1.5) to the ‘reduced’
system (4.2) we have replaced one infinite system of equations by another. It is not until we
truncate the system at some finite (but potentially large) aggregation number that we find a
gain in efficiency.

There are two natural ways of truncating the normal Beckérifig system of equations;
one method maintains the conservation of density

R
o= Z re 4.7)
r=1
by not allowing clusters larger than size= R to form. This yields
cr = Jr-1 (4.8)

inadditionto (1.3)—(1.5) (with (1.3) only holding forg » < R—1)forthe system of variables
{c,(1)}®_,. A second truncation method allows the Beckeiridg model of nucleation to be
combined with another model for the subsequent growth of clusters. In this model mass can
pass out of the ‘top’ of the system through the formation of clusters ofrsizek + 1; hence,

we have

Cr = Jr_1—agcicr+ f (49)

where f represents a source @&f-clusters due to the fragmentation of larger clusters as
described by another model for clusters of size greater ghdrater, we shall concentrate on

the former truncation (4.8) both for simplicity, and because we can confirm that it retains the
structure of the Becker-@ing equations: namely, (i) it maintains a conserved quantity (the
densityo = Zfﬂ rc¢,) which can be used as a check when carrying out numerical simulations;
(ii) it also has a unique equilibrium solution,(= Q,c}) generated by the partition function
(Q,); and (iii) a Lyapunov functiorvV = Zle c-(log(c,/Q,) — D).
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Provided thak dividesR — 1, the coarse-grained contraction procedure replaces a system
of R equations with a system &f = 1+(R — 1)/A equations, where (4.8) or (4.9) is replaced

by
).CM =Ly or ).CM =LM_1—0[M)C])_LXM+¢ (410)

respectively, where allows the reduced Becker-€ling system to import mass from another
model which describes the growth and fragmentation of larger clusters.

Inthe system generalized for two-component nucleation, let us denote the largest aggregate
of type X by Ry and that of typ&’ by Ry, then if(Rx — 1)/A = My and(Ry — 1)/&§ = My
the coarse-graining procedure reduces the total system sizeRfyanRy — 1 to Mx + My — 1.
The choice of the maximum cluster size, and the coarse-graining grid size which is used is
arbitrary. The process is an approximation, and choosing small grid sizes will keep errors
small; however, later we show that reasonable results can be obtained even with large grid
sizes. The benefit of using a coarse-grained model is that there are fewer parameters to be
determined. Whereas the full model igs+ Ry fluxes and so @Rx + Ry) rate parameters to be
found, the reduced model has onlga2yx + My). There are many physical effects influencing
which grid size is most appropriate in a particular example; in some situations the free energy
appears to have quasi-periodic oscillations superimposed on a smooth curve: this provides a
natural size scale, as illustrated in figure 2.3 of Lewis [13]. Other mechanisms which may
influence the choice of grid size are sizes where inhibition or catalysis becomes important, as
discussed in [15,17].

The generalizations of (4.8) and (4.9) to the two-component system are obvious; for (4.8)

it is relatively straightforward to check that the equilibrium solutionsis = Xsf
st = QY s, where
o Ox, = PQr.,  %0Qz =hBu0s, 01=1=01 (4.12)

and that this equilibrium solution is unique. It can also be verified that the demsity
s1+ Y MO AA,sX + M £8,s) is conserved, and that
o7 ) - 1) (4.12)

Mx SX My SY
V =si(logs; — 1) + stf (Iog (Q”X ) - 1) + Zssny (Iog ( z
n=2 Ay n=2

is a Lyapunov function, and that the system of identities is

My My
1S+ Y gusy + Y hus) = (g2 — A+ Dg) LY + (hy — £(E + Dg1)L]
n=2 n=2

Mx—1 My—-1
+ ) (1= 8 = A2DLY + ) (hper — hy — E%1)L) (4.13)
n=2 n=2

A direct verification of the full model against experiments is not possible due to (i) the
large number of unknown rate coefficients, and (ii) difficulties in accurately determining the
concentration distribution profile from experimentally data: for example, determining the
concentrations of dimerg4) as distinct from the concentration of trimets) etc. However,
macroscopic quantities such as those appearing in the model above should be verifiable against
experimental results. Since there are potentially very few parameters present in this model, it
should be possible to deduce approximate values to them. The system (4.2) is a substantial
simplification of the original system, and provides a set of equations which are more amenable
to analysis.
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4.2. Almost maximally contracted system

As an example of the truncated system described above, let us consider a fairly extreme case
where there are only two types of each cluster retained. Thus our model has five concentration
variabless;, s2 , 55, 53 ands} which are determined by

=A@ +N)LY —02LY — g1 +e)L) — $2L§

Sé( — LX LX Li( — X 1+A ﬁ
55 =15 Ly = ol i*f BYs (4.14)
$=L1 L3 Ly =a5sisy — B3 S3
53=1Ly Ly =aysis; — Bysi.
This system conserves density:
0 =51+ A+ D)5y + A2+ D)sF +E(E + 1)s) +E(28 + 1)sy (4.15)

and has a Lyapunov function,

X X XnpX X
V = s1(logsi — 1) +xs§‘ (IoQ (52 ;2 ) — 1) +As§‘ (Iog (,32 }/(33—;?3 ) - 1)
]_ o ()[2
ves! (Iog (/32 Sz) > +£s) <Iog (’32 icke ) - 1) . (4.16)
1 o Olz

However, even the examination of this reduced system using analytical techniques is
challenging, and requires numerical methods for a detailed analysis. In the next section we
shall consider a further simplification, in which only three concentrations are retained.

4.3. Maximally contracted system

We shall now considef, A large enough such that the system contains just three significant
concentrations, namely, s3 ands}, and hence only three equations. Later, this will enable
greater analytical progress to be made in the solution of the equations. We nowsigingfe

for r > 3, our assumption implying that the amount of these clusters made is negligible: thus
we ignoreLX, LY for r > 2. Eliminating all but one concentration of each type of cluster in

this way yields
§X X A X X 5y Y &8 Y.y
§5 =y s) — ,32 55 2 =157 — B35 (4.17)
Sl = —)\.A(Xl Sl + )LAﬂz 52 - s:a]}jsf +$Eﬁgs;

definingA =A+1,E =& + 1.
In the next section we apply this model to the coagulation-dominated case analysed earlier,

in the original formulation this correspondsd®, a’ = O(1) andbX, bY = O(¢). Following
the coarse-grained contraction we thus hayfea! = O(1), g5 = O(e*), BY = O(&%). We
thus defingp = £/, and a new small quantity,= O(e*), so thatst = O(5”). To simplify
ensuing analysis we eliminate all subscripts from the model equations by repladigg;

X by u ands) by v. We work in a timescale such thef = 1, defines so thatgX = §, and
then our model can be written as

u=s"—8u v =as® — B8"v § = AASu — AAs™ + EEBSPv — EBas®  (4.18)

for some constants, 8. In practice, the rate constants in the full system of equations are
unknown; the rates, 8 will be assigned directly into the reduced equations. Thus, we ignore
the change of timescale (1.11) since this will automatically be accounted for in the assignment
of rates. In the next section we shall show that asymptotic and numerical solutions agree with
each other, and provide useful approximations to the kinetics observed in the solution of the
full system described in section 3.
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5. Analysis of macroscopic model

We have taken the largeand larges limit of equations (4.2) so that only one type of cluster
of each type need be considered. Due to the possibility of different grain sizeg}, there
are a number of cases to analyge> 1, p < 1, andp = 1. We start by analysing the final
case—where the mesh size is the same for clusteXstgpe as fory (A = E), and then move
on to the harder problem whepe> 1. The case < 1 is very similar top > 1 so will not be
detailed separately here.

5.1. Equal mesh sizes

Since the system (4.18) has a conserved quanptity,s + Au + Ev, it is further reducible. If
we make the two coarse-graining parameters equak(A + 1 = E), then the rate equations
become

w=—8u+[o—rA(u+v)]* V= —Bv+afo—rAm+v)]* (5.1)
and both occurrences éfare of the same order of magnitude.

5.1.1.r = O(1). In the first timescale, both andv are®(1) and evolution occurs on the
given timescale = O(1). The leading-order equations can be solved by noglbpg: o with
v(0) = 0 = u(0) thusv = au, and

0 1

“= AA(A+a) (1 [1+A2A(1 +a)g*t]l/*>
— ea 1— 1

v AL +a) ( [1+22A(1L +a)o*]V* )"

Over this first timescale the concentrations of the two species increase in a similar fashion,

remaining proportional to each other. As time progresses the rate of increase slows, but the

solution is oblivious to the equilibrium configuration, and the fragmentation gtés The

solution ceases to be valid due to the exhaustion of the monomer: new terms enter the leading-

order balance when = O(8Y*). This implieso — AA(u + v) ~ 84 which occurs when

t ~ 87/, Atthis point, a new timescale is necessary.

(5.2)

5.1.2.t = O~*/M). Insertingt = §~*/A1, with t, = O(1) into (5.2), yields

1 81/A d
~—nn|0o— an
‘ AL +a) (Q [A2A(1 +0t)t2]1/A) 53
1 81/Aa 0 ( . )
~—_— - as t .
YT <“Q [2A( +a>t2]1/A> 2
Thus, we use the new variables, v, given by
_sun _sua
po @8 a0 — 6 aw, (5.4)
AA(L +a) ANl +a)
The equations foti»(12), v2(22) are then
du, AA (uz + avg)? dv, AA (u2 + avg)?
Cme— Aot E=po- (5.5)
dr, 1+a) dr, 1+a)

This system can be solved by transforming to the new variablesv, —u, andx,; = uy+avs:
then the equation foy, can be integrated immediately, ¥ = (8 — 1)o1, since at the start of
this timescaley, = 0. The equation fox; is

dxo kAxé\

— =0l +ap) — W

0 (5.6)
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which cannot be explicitly integrated. By matching with the first timescale we see that
x2 ~ (L +a)*2 /(A2 At)Y2 ast, — 0. Equation (5.6) shows thap continues to decrease,
and asymptotes t@[1 +aB)(1 +a)*~1/AA]YA ast, — oco.

Over this second timescale the concentrations of the two species diverge linearly with one
growing at the expense of the other. This is seen from the growthfof 8 > 1, and decrease
if B < 1. Inthe former case increases while decays, whereas ff < 1 theny, is negative
and decreases, giving growth ofand consequent loss ef These processes occur over a
much slower timescale than the initial kinetics.

5.1.3.t = O(6~Y). The second timescale ceases to be valid due to the increaseWhen
tr ~ 874y, ~ 5714 and another term from the determining equations enters the balance.
Thus, in the third timescale we work with = 8¢, x3 = x, andyz = 8% y,:

dys (@ +B)ys

— = -1 - —= 5.7

o~V —g (5.7)

a(l—Bys  rAxp
1+a) 1 +a)+-1

The time derivative ofc3 does not appear at leading order, thyss slaved toys. Since

equation (5.7) fows is linear, its solution is easily found:

CoB-DA+A [,  [(—@+B)s
BE=ET 0 [l exp( 1+a) >] (5:9)

The quantityxz can then found from the algebraic equation (5.8). Howewgrepresents a
higher-order correction to the concentratian®, so does not affect the leading-order results:

0=o(1+apf)+ (5.8)

w=—>2 [1+“(ﬁ_1) {1—exp<w>” (5.10)
AA(L+a) (a+B) (@+1)
AN +a) (o +B) (@ +1)

In this solution, the constant of integration has been determined by matching the solution back
into the previous timescale, a procedure which shows thatas 0, y3 ~ (8 — 1)ot3. The
large-time limit behaviour of both the variableandv is a monotone approach to the constants

Bo (074
Uu—> — vV—> —M——
AA (o + B) AA(a + B)

Over this timescale the concentrations approach their equilibrium values on an even slower
timescale than the evolution of the second timescale. The complex structure of the approach to
equilibrium in the system (5.1) can be seen from the equations themselves. At leading order,
a straightforward search for equilibrium states yields a one-parameter family

U= v:ﬁ—go for ngpéﬁ.
This provides the reason for the longer timescales in the above analysis. Over the firsttimescale
the system evolves to one member of this one-parameter family (5.13); then over the second
timescale, the trajectory smoothly turns around, and over the third timescale the system moves
through this family until it reaches the one member which is a genuine equilibrium solution,
i.e. the state which is an equilibrium when all higher-order terms are included (as well as just
the leading-order terms).

as 3 —»> Q. (5.12)

(5.13)
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5.2. Different mesh sizes

The system of equations we aim to solve is (4.18). We now consider the case&vheke
giving p = &/ > 1, thus the fragmentation rate ofis much smaller than that af, leading

to an equilibrium configuration in which dominates:. At equilibrium, to leading order in
8 « 1, the concentrations take on the values

1/E A/E
& B aé B EE

However, at early times, before the effect of fragmentation becomes important, the gize of

andv will be comparable, and it < 1 then, at early times, the concentratiomill exceed

that ofv. Thus, at intermediate times we observe concentrations which are wholly unrelated

to the equilibrium properties of the system. We now make this argument formal by solving

the system (4.18) using matched asymptotic expansions.

5.2.1.r = O(1). Initially, the system responds on a timescalefl), where all of the
concentrationg, v ands take onO(1) values, withs decaying fromp. To leading order, on
this timescale, the concentrations evolve according to the equations

u=sh v =as® § = —AAsD — agEsE. (5.15)

Unfortunately, these cannot be solved explicitly, as those in the gasel were. But it
is possible to determine the large-time asymptotics solutions where 0. Ast — oo,
§ ~ —AAs? givings ~ 1/(A2ADY* i = O@¢=2*) andv = O(r~%/*). Thus,

U —> Ulso and UV — Vlso as t— o (5.16)

for some constants;,, vi,- In order to satisfy density conservation, these two constants
must satisfyp = AAu1 + £ Evie. Thus, over this timescale, both concentratiorendv

grow according to the nonlinear equations (5.15), using up, to leading order, all of the available
resources of monomer. The decline in monomer concentration is halted by the re-emergence
of fragmentation in the limit — oo, necessitating the introduction of a new, longer timescale.

5.2.2.t = O(5~*"). Sincep > 1, itis the fragmentation term in theequation in (4.18)
which becomes significant first. This occurs wién~ §, implyings = O(6~*/4). Thus, the
new timescale we defineis = §*/2¢, and over this timescake= §/2s, with s, = O(1). To
leading order, the concentrationandv areO(1) constants at the end of the first timescale;
in the second we allow time-dependent variations around this constant by writing

U=Uln T (Sl/Auz V="V T+ S(Ei/\)/sz. (5.17)
The leading-order equations are then

ds; duy dv, =

d_tz = XAuloo — )\.Asé\ d_t2 = Sé\ — U1 d_t2 = s,y . (518)
Thus, over this timescale, the system tends to the configuration
s — 81/Auiéé\ U= Uioo + 8V M Upsy V—> V1eo + SE/Aaulso/cAt (5.19)

for some constani,.,. The decline in monomer concentration ceases and asymptotes to
an O(8Y%) constant. The concentratiomsand v undergo minor modifications, with the
modification inu tending to a constant, the first correction terna growing linearly. Since to
leading-order all concentrations are constant, and yet the system is not at, or near, equilibrium,
further, even longer, timescales are required to analyse the decay of this metastable state, and
the genuine approach to equilibrium.
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5.2.3.t = O(~%/*). The growth of the correction termp in (5.19) to the concentration

v is unsustainable whilst both of the other concentrations remain constants. At larger times,
density conservation will prevent such a solution persisting: in particular, on a timescale of
t = O(87¥/M). The scalings we now investigate are thus

t3 = 8%/0¢ s = 8Y 2 s55(t3) u = usz(ts) = O1) v=us3(tz) = O(1). (5.20)
The leading-order determining equations are

A dl)4 _

0 = AAuz+&£Ev3 O=s; —ua — =as (5.21)
dta

~m

where the equation for conservation of density has been used in place of the differential equation
for s. These can be rearranged to show thasatisfies d3/drs = —& Eaug/A/AA, which is
solved by

1
Uz = —— (5.22)
upEVR 4 aEE(B — A)1z/AA2]A/E-D)
with the solutions fomws, s3 following immediately by
—AA
ss=ul/t py= 208 (5.23)

=
I3

This solution describes the relaxation of the metastable state since it is over this timescale that
the concentration decays from being aP(1) to being small. During this timescale, the cluster
concentration is in equilibrium with the monomer concentrationHowever, monomers are
continually combining to increase the concentration ofittreorphology, causing ands to
decrease monotonically. At large times the above solution ceases to be valid, since the decay
of u is accompanied by a decay in the monomer concentratipragd whens = O(85/*F)

the fragmentation of becomes significant.

52.4.t = OB~ Ps*D/E) At the end of the previous timescale, (5.22) and (5.23) imply
thatv — o/ E; thusv reaches its leading-order equilibrium value at the end of the previous
timescale and only undergoes small modifications in this fourth timescale. The fragmentation
of v becomes relevant wheg = O(§~(E-2?/*A) which implies that the new timescale is
determined by = §~75*D/E¢, with 1, = O(1). Onthistimescale = §7/Zs4, u = §P~1/Ey,

andv = /£ E — §»~V/Ey,. The leading-order equations for these quantities are then

Bo
EE
Here the monomers (with concentratignequilibrate with the dominant cluster morphology

(v) through a term representing the fragmentation-gfusters, the first timg has entered
our analysis. The system (5.24) is solved by

o AA dx Ev
4= _ . oL sa=uy ™. (5.25)
ez @& BExE/M — Bo AA

AN

dv4 o)
- = as? —
dts 4

0= AAugs —EEv4 Ozsf — Ug. (5.24)

Over this timescale, the solution reaches equilibrium since the leading-order large-time
asymptotics of this solution agree with the previously described equilibrium solution (5.14).
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Figure 6. Plots ofs, u, v againsts for the maximally contracted case with = 4, 8 = 8,
§ =0.0001,p =1.0,A =9, =12.

5.3. Results from numerical solution of the reduced system

The maximally contracted system of equations (4.18) has been solved numerically (again
using a predictor—corrector scheme with timestep §/10), and results for the case= 4,
B=838=10%1r=9& = 12,0 = 1 are presented here. Figure 6 shows a log-log
plot of the concentrations of the two cluster types and the monomer source against time.
The initial growth of both cluster types is seen to slow as the monomer becomes exhausted,
and the eventual overtaking ofz) by u(r) occurs atr ~ 5; after this the concentratian
continues to increase at the expense ofhrough the fragmentation afto monomers and
subsequent aggregation of monomer to form more larger clusters of:typgure 6 should

be compared with figure 3, where we observe a qualitatively similar shape of curves. The
differences in amplitude of the monomer concentration are due to the fact thas$ only

taken to be 10%, whereas a full comparison with the example shown in figure 3 would require

8 = ¢* = 1078 There are considerable problems in the numerical solution of systems with
such small parameters, hence such an extreme case was not attempted here.

Figure 7 shows a trajectory itu, v) phase spacer = 0 corresponds to the origin
o, = 0 = p,, both cluster types form, and a maximuminoccurs when: =~ 0.0025.

At this point the slow timescales are entered, and the system then slowly evolves down the
diagonal straight line, the monomer concentration being uniformly small from this point until
equilibrium is achieved, where is almost zero. This figure is analogous to figure 4 which
represents data from a numerical solution of the full problem.

The asymptotic results enable this behaviour to be described as occurring over four
timescales: over the first both cluster types grow and exhaust the supply of monomer. Over the
second, longer, timescale, fragmentation causes the monomer concentration to stabilize at some
small positive constant. During the third, even longer, timescale the monomer concentration
remains small while fragmentation now influences the cluster concentrations, causing mass to
pass from one less thermodynamically stable morphology to the more stable form. Finally,
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Figure 7. Plots ofv againstu for the maximally contracted case with= 4, 8 = 8,5 = 0.0001,
p=10,1=09¢=12.

there is an even longer timescale over which equilibrium is reached, at equilibrium almost all
the mass is in one form, there being only asymptotically small amounts of monomer and of
the less stable cluster morphology.

6. Discussion

We have proposed a model for nucleation in which two morphologies of cluster are able to
form from a single type of monomer. Clusters of both structures grow according to classical
nucleation theory and, if we were to impose a constant monomer concentration then the growth
of each cluster-type would be independent of each other. However, we have considered the
more relevant and interesting case where the total concentration of material is kept constant:
this means that the two species of cluster compete for the finite amount of monomeric material
present within the system, and the relative growth rates of the two types of cluster then
become important in the kinetics of nucleation. By considering an aggregation-dominated
system we have been able to determine the form of the solution through the use of matched
asymptotic expansions. The structure of the solution has been found in the special case where
all aggregation and fragmentation rates are independent of cluster size.

Asymptotic analysis of the full model identifies a sequence of four timescales over which
the kinetics occur. The complexity of the problem precluded a full explicit form for the cluster-
distribution function being found, but approximations were derived in the matching regions.
During the first timescale fragmentation is negligible and sizable concentrations of both types
of cluster are formed, typically having small aggregation numbers. The number of clusters
formed depends solely on the aggregation rate, and not on the thermodynamic stability of
the clusters. The monomers are rapidly used up, and over a second timescale the monomer
concentration becomes, and stays small. During the third timescale, which is a slow timescale,
mass is transferred from the less thermodynamically stable to the more stable form through
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the fragmentation of the less stable clusters into monomers and the growth in size of the
more stable form of cluster. However, equilibrium is not reached over this timescale, since
the cluster-distribution function is given by a similarity solution and is constantly evolving.
Finally, over a fourth, even slower timescale, the system reaches its equilibrium configuration.
Over this timescale the distribution function for the more stable form satisfies a continuum
version of the Becker—@ring equations. The special case where the two morphologies are
equally stable has been analysed, and results are broadly similar to the general case, though
they cannot be obtained directly from it. The system of equations was then solved numerically
and for one choice of parameters the results were presented. The sequence of behaviour over
the timescales described above is seen in the numerical results also, confirming the validity of
the asymptotic expansions.

A coarse-graining contraction procedure was invoked and used to simplify the equations
by reducing the dimensionality of the system. When applied to a truncated version of our
modified Becker—Bring equations, a system of just three ordinary differential equations was
ultimately obtained. The simplified system was solved using matched asymptotic analysis
in two cases. In the first, the mesh size (or grain size) was taken to be the same for both
species of cluster. This gave kinetics which occurred on three timescales, an initial growth
in both morphologies, followed by a long timescale during which the concentrations changed
linearly, and a final slightly longer timescale over which the concentrations underwent slight
modifications to equilibrium. In the second case, the mesh sizes for the two species are
taken to be different. This leads to a situation in which one species dominates the other at
equilibrium. The kinetics in this case are more complex, there being four timescales through
which the system evolves. Initially, the species with the faster aggregation rate gains the larger
concentration, regardless of which is more thermodynamically stable. Although this may
appear obvious at the start of the reaction, the system passes through a long timescale before
the final equilibrium form of the solution starts to influence the kinetics of the reaction. This
sequence of events can also be clearly identified in the numerical solution of the equations.
If clusters of the more stable morphology have a smaller growth rate than clusters of the less
stable form then the less stable clusters will gain a greater concentration initially, and then
such a state will persist until the penultimate timescale—a surprisingly long time. The system
can thus be viewed as entering a metastable state in which the concentrations of both forms
of cluster are comparably large, and the monomer concentration is small. In this state no
concentration is near its final equilibrium value, yet evolution occurs on a slow timescale due
to the low concentration of monomers.

Thus we have elucidated some of the reasons for metastability in the process of nucleation
by considering a system in which two morphologies of solid can precipitate out from a
supersaturated solution or supercooled melt. Although inspired from classical nucleation
theory, our model does not require the solids to be crystalline: they could be gels, or amorphous
solids; such information would only affect the coagulation and fragmentation rate coefficients,
but not the form of the equations. A good example of such a system, in which two cluster types
can be formed from a single monomer type, are the chiral crystallization experiments conducted
by Kondepudetal[10-12]. Inthese, an achiral monomer can nucleate to form one of two types
of crystal, namely a left- and a right-handed product. An explanation of the effects investigated
by Kondepudket al requires secondary nucleation to be included in our model (in the manner
of [15]), and so falls beyond the scope of the current work but, in a future work, it is hoped
to generalize the model presented here to include nucleation by both primary (homogeneous)
and secondary means and present an investigation into the resulting system of equations.
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