
A Becker-Döring model of competitive nucleation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 8755

(http://iopscience.iop.org/0305-4470/32/49/315)

Download details:

IP Address: 171.66.16.111

The article was downloaded on 02/06/2010 at 07:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/49
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) 8755–8784. Printed in the UK PII: S0305-4470(99)02514-7
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Abstract. We introduce a modified Becker–Döring system of equations which models the
nucleation of two types of cluster from the same monomer. This competitive nucleation system
is then studied in the coagulation-dominated asymptotic regime where a succession of timescales
is identified through which the system passes, and in which the cluster distribution profile is
described. The system is then subjected to a coarse-grain rescaling leading to a low-dimensional
system of equations for macroscopically observable quantities. This system is also solved in
the coagulation-dominated regime. Examples of the full system and the reduced system are
solved numerically to show the similarities in the behaviour exhibited by their respective solutions.
This study has applications to experiments involving crystallization where various morphologies
of growing crystals are observed, and to protein crystallization, where gels and/or amorphous
material precipitate out of solution simultaneously with crystals. We highlight how some aspects
of observed phenomena may be determined by the kinetics of the process rather than by the relative
thermodynamical stability of the two cluster types allowed within the system.

1. Introduction

In recent years, the Becker–Döring equations [3] have been generalized in a variety of ways
and applied to many areas: from colloid chemistry [2,5,6], nucleation theory [14,15] to RNA
chain formation in the prebiotic world [16] and more general polymerisation reactions [1]. In
this paper we generalize them with the aim of constructing a model of competitive nucleation,
where two distinct types of cluster can be formed from the same basic monomer.

The problem of which morphology of crystal results from a crystallization experiment in
which various types of crystal can be formed is a problem which has yet to be fully resolved.
Experimentally, it is known that it is not necessarily the most thermodynamically stable form
which nucleates first. Various explanations for this have been put forward, such as finite size
effects [9], which can reverse the stability predicted by thermodynamic limits.

The approach adopted here is a generalization of an approach suggested by Kamet al [8].
We propose a thermodynamically consistent kinetic model which permits an equilibrium
solution, and is sufficiently simple that properties of the solution at intermediate times can
also be found. Whereas the Becker–Döring-style model proposed by Kamet al only allowed
one type of cluster to form, we propose a model which allows two distinct types of cluster to
form simultaneously. These could be two morphologies of crystal, or one of crystal and one
amorphous or gel.

Initially we analyse the full problem in the aggregation-dominated limit. This builds on
work in [18] where the standard Becker–Döring equations were analysed. The approach
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enables the sequence of timescales over which the process occurs to be identified, and
approximate cluster distribution functions to be found for the times where one mechanism
takes over from another as being the rate-determining step. However, much of the temporal
evolution of the system remains unsolved, so an alternative approximation is used—namely
the coarse-graining method. This method has been used in various applications [5,7,15], and
has recently been analysed in more detail [7, 17, 18] in an attempt to assess its accuracy and
validity. Using this method we uncover more of the kinetics of the process and are able to gain
leading-order solutions for measurable macroscopic quantities.

In the remainder of this section we review the Becker–Döring system of equations and
quote its basic properties. We give a brief summary of the coarse-grained reduction method
which will be generalized later in the paper. Section 2 introduces a new model for competitive
aggregation which is the principal subject of study in this paper. Due to the complexities of
the new model—both in its nonlinearity and nonlocality—a general solution is not available.
In section 3 an asymptotic solution is derived which demonstrates some of the phenomena
describable by the new system of equations. Results from a numerical solution of the
problem are also presented, confirming the validity of the asymptotic solution. An alternative
approximate solution method is derived in section 4, where a coarse-graining procedure enables
the passage from a microscopic model to a macroscopic one. This much simpler system
is analysed in section 5 using dynamical systems theory, where asymptotic and numerical
solutions are compared. The results are discussed in section 6.

1.1. Review of the Becker–Döring equations

Our model is based on the Becker–Döring system of equations for the growth of clusters.
This system uses the concentrations of clusters of each aggregation number (r) as dependent
variables,cr(t). The only mechanism by which clusters can grow or fragment is by the gain
or loss of a single monomer at a time. Thus, if we represent a cluster of sizer byCr , we only
allow reactions of the form

Cr +C1
 Cr+1. (1.1)

The forward reaction is assumed to occur at a ratear , and the reverse at ratebr+1. We shall use
the form of equations in which the total mass, or density, of material

% =
∞∑
r=1

rcr (1.2)

is constant. The kinetic equations for the concentrations are then

ċr = Jr−1− Jr (r > 2) (1.3)

Jr = arcrc1− br+1cr+1 (1.4)

ċ1 = −J1−
∞∑
r=1

Jr . (1.5)

As well as the conserved quantity (1.2), this system of equations has the physically relevant
property of having a unique equilibrium solution, which we shall write ascr = Qrc

r
1, where

Qr is the partition function derived from the forward and backward rate coefficients by

arQr = br+1Qr+1 Q1 = 1. (1.6)

Also, there is a Lyapunov function

V =
∞∑
r=1

cr

(
log

(
cr

Qr

)
− 1

)
(1.7)
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provided this is bounded below. The existence of this function ensures that the equilibrium
solution is approached regardless of the initial conditions specified. Finally, there is a weak
form of the differential part of the system: for any sequence{gr}∞r=1, the identities

∞∑
r=1

gr ċr =
∞∑
r=1

(gr+1− gr − g1)Jr (1.8)

hold. We shall require that these properties are maintained in any modification we make to the
system of equations.

1.2. The coarse-graining process

The above system can be coarse-grained to obtain a set of equations which model the same
process on a largerr-scale. This process is algorithmic in nature, and leads to a system of
equations with a similar structure to the original system. Eliminating the concentrationcr+1

from Jr andJr+1 leads to

ar+1c1Jr + br+1Jr+1 = arar+1cr+1c
2
1 − br+1br+2cr+2 (1.9)

and we define this quantity to be the flux from clusters of sizer to sizer + 2. This allows us
to eliminatecr+1 from the system of equations. Such a procedure can be generalized so as to
retain only one third, one quarter, or an arbitrary fraction of the dependent variables present in
the original system.

We introduce a ‘mesh function’3n to represent ther-values of retained cluster sizes. Thus
new concentration variables{xn}∞n=1 denote the concentrations{c3n}∞n=1, and the concentrations
of all other cluster sizes are eliminated from the system. In forming the coarse-grained model,
we assume that all concentrationscr with 3n−1 + 1 6 r 6 3n are equal toc3n = xn. In
general, the mesh spacingλn = 3n+1−3n can be allowed to vary with aggregation number,
so that a non-uniform grid can be used to investigate some size ranges in more detail than
others. However, for simplicity, here we shall use a uniform mesh in which3n = (n−1)λ+1.
Note that, whatever mesh is chosen, one never eliminates the monomer concentration. This
procedure leads to the system of equations

ẋn = Ln−1− Ln (n > 2)
Ln = αnxnxλ1 − βn+1xn+1

ẋ1 = −λL1−
∞∑
n=1

λ2Ln.

(1.10)

Here, the new coefficientsαn, βn are given by

αn = T a3na3n+1 . . . a3n+1−1 βn+1 = T b3n+1b3n+2 . . . b3n+1. (1.11)

The constantT is included in both forward and backward rates since, as noted in [18],
for maximum accuracy the contraction procedure should be accompanied by a change of
timescale. Alternatively, including a change of timescale in the derivation of the new system
of equations (1.10) from (1.3)–(1.5) allows the constantT to be scaled out.

The partition function (1.6) carries over to the modified system, withQ3n satisfying both
Q31 = 1 andαnQ3n = βn+1Q3n+1. This induces the equilibrium solutionxn = Q3nx

3n ,
which agrees with the equilibrium solution of the original systemxn = c3n .

The new system (1.10) also has a conserved quantity which corresponds to density. Since
the aggregation number of a particle represented byxn is 3n, its mass is also proportional
to 3n and there areλ of such cluster sizes inxr , the density of the reduced system is then
% = x1 +

∑∞
n=2 λ3nxn. The functionV = x1(logx1 − 1) +

∑∞
n=2 λxn(log(xn/Q3n) − 1)
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Figure 1. Diagrammatic summary of the model of competitive nucleation.

qualifies as a Lyapunov function under the same conditions as (1.7). Finally, for any sequence
{hn}∞n=1

∞∑
n=1

hnẋn = (h2 − λh1− λ2h1)L1 +
∞∑
n=2

(hn+1− hn − λ2h1)Ln. (1.12)

Thus, the reduced system shares the same physically relevant properties as the original system.
Note, however, that the coarse-graining has accentuated the nonlinearity in the flux term of the
new equations (1.10).

2. Proposed model

The model we propose allows two types or morphologies of clusters to form; the first, we shall
denote byCXr and the other byCYr , both form from the same monomerC1. Thus the reactions
we allow are of the form

CXr +C1
 CXr+1 CYr +C1
 CYr+1. (2.1)

Letting lower case variables denote concentrations, the kinetic equations are

ċXr = JXr−1− JXr JXr = aXr cXr c1− bXr+1c
X
r+1

ċYr = J Yr−1− J Yr J Yr = aYr cYr c1− bYr+1c
Y
r+1

ċ1 = −JX1 − J Y1 −
∞∑
r=1

JXr −
∞∑
r=1

J Yr

(2.2)

wherecXr , c
Y
r represent the concentration of clusters of typeX, Y respectively, andJXr , J

Y
r are

the mass fluxes of material from aggregation numberr to r +1 in each morphology. No cluster
can change morphology fromX to Y or vice versa; the only way mass can change from one
form to the other is by the stepwise break-up of one cluster entirely into monomers (which
have no morphology) and the subsequent reaggregation of monomers in the other form.

This system possesses the same four special properties as the original set of equations:

• A conserved quantity, which we refer to as the density of the system

% = c1 +
∞∑
r=2

r(cXr + cYr ). (2.3)

• A unique equilibrium solution

cXr = QX
r c

r
1 cYr = QY

r c
r
1 (2.4)
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where theQX
r ,Q

Y
r functions are partition functions for the two types of cluster; they

satisfy

QX
1 = 1 QY

1 = 1 aXr Q
X
r = bXr+1Q

X
r+1 aYr Q

Y
r = bYr+1Q

Y
r+1. (2.5)

The partition functions can be related to the chemical potentials of the cluster
morphologies; the chemical potential of clusters of sizer and morphologyX, Y is
respectivelyµXr , µ

Y
r where

µXr = µX	r + kT logcXr µYr = µY	r + kT logcYr (2.6)

respectively, and the chemical potential of monomers isµ1 = µ	1 + kT logc1. At
equilibrium, cXr = QX

r c
r
1, cYr = QY

r c
r
1, µXr = rµ1 = µYr . Now, choosing a reference

point in whichµ	1 = 0 implies

µX	r = −kT logQX
r µY	r = −kT logQY

r . (2.7)

• A Lyapunov function

V = c1(logc1− 1) +
∞∑
r=2

cXr

(
log

(
cXr

QX
r

)
− 1

)
+ cYr

(
log

(
cYr

QY
r

)
− 1

)
. (2.8)

This decreases with time and corresponds to the free energy of the system.
• A set of identities; for a set of numbers (g1, {gXr , gYr }∞r=2)

g1ċ1 +
∞∑
r=2

(gXr ċ
X
r + gYr ċ

Y
r ) =

∞∑
r=1

(gXr+1− gXr − g1)J
X
r + (gYr+1− gYr − g1)J

Y
r . (2.9)

To summarize, we have generalized the Becker–Döring equations to allow for different
morphologies of cluster to grow from a single type of monomer. The new system is effectively
two Becker–D̈oring systems coupled together through a more complicated equation for the
monomer concentration. This combined system retains the useful structure of the original
Becker–D̈oring model, having a unique equilibrium solution, conservation of density and
having a well-defined Lyapunov function (free energy) which guarantees convergence to the
equilibrium solution whatever initial conditions are imposed on the system.

The model allows the two morphologies to have different growth and fragmentation
rates. These rates are typically size dependent, the aggregation rates having the form
aXr = aXr1−1/d , aYr = aY r1−1/d in cases where aggregation is surface-limited ind-dimensions.
The fragmentation ratesbXr , b

Y
r then depend on the relative stability of different cluster sizes;

free-energy arguments can be used to deduce the shape of the partition functions,QX
r ,Q

Y
r ,

and then (2.5) used to work back tobXr , b
Y
r . In many crystal growth scenarios it is known

that there is a critical size, below which clusters are unstable and tend to fragment, and above
which clusters tend to grow. These scenarios can be modelled by a chemical potential which is
dependent only on bulk energy and surface energy, leading to a partition function of the form
kT logQr = ν(r−1)−σ(r−1)2/3, for example (ν being the coefficient of bulk energy andσ
that of surface energy). However, such choices for the rate constants lead to equations which
are only solvable numerically, a full general solution of the system (2.2) not being possible
to find. So, here we consider a simpler example where both growth and fragmentation rates
are size independent. In particular, we analyse the aggregation-dominated case with constant
coefficients, whereaXr = 1, aYr = a, bXr = ε andbYr = bε. In the caseε � 1, a solution is
available through the use of matched asymptotic expansions: we expect the solution to pass
through various timescales, initially fragmentation will not influence the system, but at later
times this effect will become relevant.

There is interesting behaviour associated with this example. Ifa > 1 then we expect more
clusters of typeY to form than of typeX, whereas ifa < 1 then the reverse will occur. However,
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Table 1. The six ranges fora, b determining which morphology dominates the system initially and
at equilibrium.

Parameters Initial nucleation Equilibrium configuration

a > b > 1 Y dominates initially Y dominates at equilibrium
a > 1> b Y dominates initially Y dominates at equilibrium
b > a > 1 Y dominates initially X dominates at equilibrium
b > 1> a X dominates initially X dominates at equilibrium
1> a > b X dominates initially Y dominates at equilibrium
1> b > a X dominates initially X dominates at equilibrium

the morphology which dominates at equilibrium depends on whethera > b or a < b, typeY
dominating in the former case and typeX in the latter. At this level of description there are six
combinations of parameters which can occur, as described in table 1. Lines three and five of
this table are the most interesting, for in these cases one morphology of cluster is predominant
at the start of the process but is more prone to fragmentation, so at later times the other type
of cluster dominates. In these cases especially, the timescale and manner in which matter is
transferred from one morphology to the other is of great interest.

3. Weak fragmentation case

In this section we aim to solve the problem outlined above, using matched asymptotic
expansions to find the various stages through which the system proceeds as clusters are formed,
as well as to determine the leading-order solutions.

With aXr = 1, aYr = a, bXr = ε, bYr = bε, the problem can be formulated as

ċXr = cXr−1c1− εcXr − cXr c1 + εcXr+1 ċYr = acYr−1c1− bεcYr − acYr c1 + bεcYr+1

ċ1 = εcX2 + bεcY2 − c2
1 − ac2

1 + ε
∞∑
r=1

cXr+1 + εb
∞∑
r=1

cYr+1− c1

∞∑
r=1

cXr − ac1

∞∑
r=1

cYr .
(3.1)

For this systemQX
r = ε1−r , QY

r = (bε/a)1−r . The initial conditions we are primarily
concerned with are where all material starts in monomeric form, thusc1(0) = %, cXr (0) = 0=
cYr (0) for r > 2. However, our large-time asymptotic results will be more widely applicable,
to any initial conditions with sufficiently rapid decay in the large-r limit.

Clearly the casea = b is a special case since then the shape of the equilibrium solution
for clusters of typesX andY will be the same. Other parameter values of interest will be
a = 1 6= b—where the initial stages of nucleation will be identical (aggregation dominated)
but later will differ due to the different reverse reaction rates. Ifb > a > 1 then the aggregation
of Y will initially be faster than that ofX (due toa > 1) but later in the process we will expect
more clusters ofX sincec1 → ε and the cluster distribution function forY will decay more
rapidly thanX (sincea < b).

3.1. t = O(1)
The first relevant timescale is wheret = O(1), where the fragmentation terms have no effect
at leading order. Over this timescale all concentrations areO(1), and evolve on the timescale
t = O(1), so the effects of fragmentation are ignorable at leading order. Such a simplification
means that exact explicit solutions are available—as was first noted for the standard Becker–
Döring equations by Brilliantov and Kravitsky [4].
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Thus, the system of equations we are concerned with is

dcXr
dt
= c1(c

X
r−1− cXr )

dcYr
dt
= c1(c

Y
r−1− cYr )

dc1

dt
= −2(1 +a)c2

1 − c1

∞∑
r=2

(cXr + acYr )
(3.2)

and we introduce a new timescaleτ = ∫ t0 c1(s) ds such thatd
dτ = 1

c1

d
dt , in order to remove the

nonlinearity from the problem. This yields the transformed equations

dcXr
dτ
= cXr−1− cXr

dcYr
dτ
= cYr−1− cYr

dc1

dτ
= −2(1 +a)c1−

∞∑
r=2

(cXr + acYr ).
(3.3)

We introduce generating functions in order to solve for all the variables{cXr }∞r=2 and
{cYr }∞r=2 simultaneously. We define

F(x, τ ) =
∞∑
r=2

xrcXr (τ ) G(x, τ ) =
∞∑
r=2

xrcYr (τ ). (3.4)

The equations determiningF(x, τ ),G(x, τ) andc1(τ ) are then

∂F

∂τ
+ (1− x)F = x2c1(τ ) (3.5)

∂G

∂τ
+ a(1− x)G = ax2c1(τ ) (3.6)

dc1

dτ
+ 2(1 +a)c1 = −F1(τ )− aG1(τ ). (3.7)

Initially, we shall be concerned with the simpler system of three equations forc1(τ ),
F1(τ ) = F(1, τ ) andG1(τ ) = G(1, τ ):
F ′1(τ ) = c1(τ ) G′1(τ ) = ac1(τ ) c′1(τ ) = −2(1 +a)c1(τ )− F1(τ )−G1(τ ) (3.8)

which form a closed system.
Taking the ratio of the first two equations yieldsG1 = aF1 when it is noted that the initial

conditions implyG1 andF1 are simultaneously zero. Nowc1 = F ′1 is used to construct a
linear constant coefficient ordinary differential equation forF1. Imposing the initial conditions
F1(0) = 0 andc1(0) = % yields the solution

c1 = %e−τ(1+a)

[
cosh

(
τ
√

2a
)
− (1 +a)√

2a
sinh

(
τ
√

2a
)]

(3.9)

F1 = %e−τ(1+a)

√
2a

sinh
(
τ
√

2a
)

G1 = %
√
ae−τ(1+a)

√
2

sinh
(
τ
√

2a
)
. (3.10)

Now we are in a position to solve thex-dependent problem (3.5), (3.6). Now thatc1(τ )

has been found, these equations can be integrated to give the generating functions

F(x, τ ) = %x2e−τ

2
√

2a

[(
1 +a −√2a

x + a −√2a

)
(e−τ(a−

√
2a) − exτ )

−
(

1 +a +
√

2a

x + a +
√

2a

)
(e−τ(a+

√
2a) − exτ )

]
(3.11)
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G(x, τ) = %
√
ax2e−aτ

2
√

2

[(
a + 1−√2a

ax + 1−√2a

)
(e−τ(1−

√
2a) − eaxτ )

−
(
a + 1 +

√
2a

ax + 1 +
√

2a

)
(e−τ(1+

√
2a) − eaxτ )

]
. (3.12)

From these, it is now a simple matter to extractcXr andcYr by expanding them as Taylor series
in x. This yields

cXr =
%e−τ

2
√

2a

[(
1 +a −√2a

a −√2a

)( −1

a −√2a

)r−2 ∞∑
i=r−1

[−τ(a −√2a)]i

i!

−
(

1 +a +
√

2a

a +
√

2a

)( −1

a +
√

2a

)r−2 ∞∑
i=r−1

[−τ(a +
√

2a)]i

i!

]

cYr =
%
√
ae−aτ

2
√

2

[(
a + 1−√2a

1−√2a

)( −a
1−√2a

)r−2 ∞∑
i=r−1

[−τ(1−√2a)]i

i!

−
(
a + 1 +

√
2a

1 +
√

2a

)( −a
1 +
√

2a

)r−2 ∞∑
i=r−1

[−τ(1 +
√

2a)]i

i!

]
.

(3.13)

This solution ceases to be valid when the monomer concentration drops to zero, this occurs at
τ = τc given by

τc = 1

2
√

2a
log

(
1 +a +

√
2a

1 +a −√2a

)
. (3.14)

As τ → τc, c1→ 0, and whenc1 = O(ε), other terms enter the leading-order balance, and a
new timescale is required. The second timescale is shifted byK log(1/ε) from the first. Since

t =
∫ τc+ετ2

0

dτ

c1(τ )
∼
∫ τc+ετ2

κ

K dτ

(τc − τ) ∼ −K logε +O(1) (3.15)

(for someO(1) constantκ). The constantK is determined by 1/K = (− dc1
dτ )|τ=τc , hence

K =
√

1 +a2

%(1 +a)
exp

(
(1 +a)

2
√

2a
log

(
1 +a +

√
2a

1 +a −√2a

))
. (3.16)

Unfortunately, due to the complexity ofc1(τ ) in (3.9), it is not possible to explicitly relate the
results (3.13), quoted in terms ofτ , back to the original timescalet .

3.2. t = K log(1/ε) +O(1)

This timescale is defined byt = K log(1/ε) + t2 wheret2 = O(1) and over this timescale
c1 = εC1, with all other concentrations{cXr }∞r=2 and{cYr }∞r=2 remainingO(1). To leading order:

dcXr
dt2
= 0

dcYr
dt2
= 0

dC1

dt2
= cX2 + bcY2 +

∞∑
r=1

(cXr+1 + bcYr+1)− C1

∞∑
r=2

(cXr + acYr ).

(3.17)

Thus, all concentrations except that of the monomers remain constant, which implies the
equation governingC1 is linear, so over this timescale the monomer concentration relaxes to
its pseudo-equilibrium value

C1→ C
†
1

def=
∑∞

r=2(c
X
r + bcYr )∑∞

r=2(c
X
r + acYr )

+
cX2 + bcY2∑∞

r=2(c
X
r + acYr )

as t2→∞. (3.18)

As t2 → ∞ all concentrations are constant, and so the next timescale will be considerably
longer.
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3.3. t = O(ε−1)

Since the rescaled monomer concentrationC1 = c1/ε tends to anO(1) constant at the end of
the previous timescale while all the other concentrations remain order one constants, we must
maintain these scalings, in the new timescale, and analyse the system over a longer timescale,
which is defined byt3 = εt . Thus, our governing equations are

dcXr
dt3
= C1c

X
r−1− C1c

X
r − cXr + cXr+1 (3.19)

dcYr
dt3
= aC1c

Y
r−1− aC1c

Y
r − bcYr + bcYr+1 (3.20)

ε
dC1

dt3
= cX2 + bcY2 − aεC2

1 − εC2
1 + b

∞∑
r=1

cYr+1 +
∞∑
r=1

cXr+1− aC1

∞∑
r=1

cYr − C1

∞∑
r=1

cXr . (3.21)

At leading order, equation (3.21) implies that the monomer concentration remains in
equilibrium with the rest of the system at all times, thusC1 = C†

1 as given by (3.18). The other
equations, however, are not explicitly soluble.

To gain an intuitive understanding of the behaviour of the system over this timescale,
we investigate the temporal evolution of some macroscopic quantities associated with the
cluster distribution functions. We define new quantitiesNX(t3), NY (t3) to denote the total
number of clusters of each type, and%

X
(t3), %Y (t3) representing the total density (mass) in

each morphology. These are defined by

NX =
∞∑
r=2

cXr NY =
∞∑
r=2

cYr %
X
=
∞∑
r=2

rcXr %
Y
=
∞∑
r=2

rcYr . (3.22)

All these are time-dependent quantities, with the densities satisfying%
X

+ %
Y

+ c1 = %

independent of time, althoughc1 = O(ε) implies that% = %
X
+%

Y
at leading order. Using (3.18)

and (3.19), (3.20), the new quantities we have introduced satisfy the differential equations

d

dt3
NX = −cX2

d

dt3
NY = −bcY2 (3.23)

d%
X

dt3
= (C1− 1)NX − cX2

d%
Y

dt3
= (aC1− b)NY − bcY2 . (3.24)

Using the fact thatC1 is given by(NX + bNY + cX2 + bcY2 )/(NX + aNY ), (see (3.18)), the above
can be rewritten as

d%
X

dt3
= (b − a)NXNY

NX + aNY
+
bcY2NX − acX2 NY
NX + aNY

(3.25)

d%
Y

dt3
= (a − b)NXNY

NX + aNY
+
acX2 NY − bcY2NX
NX + aNY

. (3.26)

In this form, it is clear that (3.25), (3.26) satisfyddt3 (%X + %
Y
) = 0 implying conservation of

density at leading order, as noted above.
Clearly (3.23), (3.24) do not form a closed system of equations, but they do help us

understand the dynamics occurring on this timescale. Since all terms from the original
equations now enter the leading-order balance, towards the end of this timescale we expect
a local equilibrium to become established in which clusters of small size equilibrate with the
monomer concentration. Thus, we expectcX2 andcY2 to become small. Formally, equilibrium
is given bycX2 = εC2

1, andcY2 = aεC2
1/b, but sincecX2 , c

Y
2 areO(1) over this timescale,
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at leading order we expectcX2 , c
Y
2 → 0 ast3 → ∞. The dominant part of (3.18) is then

C1 ∼ (NX + bNy)/(NX + aNy).
The main feature of (3.25), (3.26) is the transfer of mass from one type of cluster to

the other. Ifa > b then mass is passed fromX to Y and if a < b then the transfer is
in the opposite direction. The process by which this happens is the stepwise breakdown of
clusters into monomers, which then aggregate with existing clusters of the other morphology:
(3.23) implies no new clusters are formed. This transfer of matter occurs with the monomer
concentration remaining very small: the kinetics thus proceed very slowly. Since the monomer
concentration isO(ε), and anO(1) amount of mass has to be converted, the process takes an
O(ε−1) length of time—hence the current timescale. To find asymptotic approximations to
the shape of the cluster distribution function requires us to consider several cases separately
as follows.

3.3.1. Special case:a = b. In this case, ast3 → ∞ differences in concentration between
clusters of similar size and the same morphology will be smoothed out. Thus the long-time
asymptotics of (3.19), (3.20) can be found by taking the continuum limit of the equations. We
denote solutions of the continuum equations bycX(r, t), cY (r, t). Equations (3.19), (3.20) are
replaced by

∂cX

∂t3
= 1

2
(1 +C†

1)
∂2cX

∂r2
+ (1− C†

1)
∂cX

∂r
(3.27)

∂cY

∂t3
= 1

2
a(1 +C†

1)
∂2cY

∂r2
+ a(1− C†

1)
∂cY

∂r
. (3.28)

In this caseC1→ 1 ast3→∞; later, we verify thatcX2 + acY2 � NX +NY , and hence show
that (3.18) impliesC1→ 1. The equations forcX, cY thus reduce to

∂cX

∂t3
= ∂2cX

∂r2

∂cY

∂t3
= a ∂

2cY

∂r2
(3.29)

which have the similarity solutions

cX = KXre−r
2/4t3

t
3/2
3

cY = KY re−r
2/4at3

t
3/2
3

(3.30)

for constantsKX,KY . This solution can now be used to check thatcX2 + acY2 � NX + aNY ,
sincecX2 , c

Y
2 are bothO(t−3/2

3 ) ast3 → ∞ whereasNX,NY = O(t−1/2
3 ), henceC1 → 1 as

mentioned above. One constraint on the constantsKX,KY is conservation of density, which
yields the equationKX +a3/2KY = %/2√π . The solution forcY is obtained from the solution
for cX by replacingt with at . This impliesKY = KX/a

3/2, henceKX = %/4
√
π and

KY = %/4a3/2√π .

3.3.2. General case:a < b. Over this timescale the introduction of fragmentation into the
leading-order balance means that the stability ofX overY takes effect. Virtually all the mass
is transformed into theX-form, through the fragmentation ofY -clusters providing monomers
which are then added to the population of growingX-clusters. The quantityC1 remainsO(1),
being determined by (3.18), but decays due to the decay ofcX2 , c

Y
2 and changes inNX,NY .

At larger times, we expect the concentration of clusters with small aggregation numbers
to tend to their equilibrium configuration subject to the present monomer concentration. In
particular,cX2 → εC2

1 andcY2 → εaC2
1/b, but since we are concerned withcX2 , c

Y
2 = O(1)
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in this timescale, we expectcX2 , c
Y
2 → 0 ast3 → ∞. Thus, at larger times, the macroscopic

densities%
X
, %

Y
are governed by

d%
X

dt3
≈ NX(C1− 1)

d%
Y

dt3
≈ NY (aC1− b). (3.31)

Since%
X
(t3) + %

Y
(t3) = %, d%

X
/dt3 and d%

Y
/dt3 must have opposite signs. Thus,C1 must lie

between unity andb/a > 1. The increase of the mass%
X

will be halted in the limitt3 →∞
byC1→ 1; and to stop the consequent decrease in%

Y
, we must haveNY → 0.

In more detail, in the large-time limit the problem forcY reduces to the constant monomer
Becker–D̈oring problem

dcYr
dt3
= acYr−1− bcYr − acYr + bcYr+1 (r > 3) (3.32)

dcY2
dt3
= −bcY2 − acY2 + bcY3 (3.33)

the form of whose solution is known [18]: formally, this approaches the equilibrium
configurationcYr = c1(a/b)

r−1, over timescales oft3 = O(1). This is formal sincec1 = O(ε),
so the equilibrium solution satisfiescr = O(ε) for all r, whereas in the current timescale we
have adopted the scalingcYr = O(1). So, to leading order, all we observe iscYr → 0 ast3→∞,
with new scalings becoming necessary whencYr reachesO(ε). When the concentrations
cYr = O(ε), their evolution is still on the timescalet3 = εt = O(1). PuttingcYr = εCYr with
CYr = O(1), we find the problem forCYr is

dCYr
dt3
= aCYr−1− bCYr − aCYr + bCYr+1 (r > 2) (3.34)

withC1 = 1, which is subtly different to (3.32), (3.33). This system approaches the equilibrium
configuration

CYr = C1

(a
b

)r−1
(3.35)

on thet3 = εt = O(1) timescale.
The solution forcX over this timescale, as forcY , is only available in the limitt3 →∞.

Here, (3.19) can be replaced by the continuum limit

∂cX

∂t3
= 1

2
(1 +C1)

∂2cX

∂r2
+ (1− C1)

∂cX

∂r
(3.36)

since the long timescale allows differences in concentration to be smoothed out. Our
assumption thatC1 → 1 ast3 → ∞ implies the advection term disappears and the resulting
purely diffusive problem has the similarity solution

cX = KXre−r
2/4t3

t
3/2
3

. (3.37)

For large times, this agrees with the assumption ofcXr → 0 ast3→∞at smallr. Consideration
of the macroscopic quantities (3.22) implies the constantKX is %/4

√
π . The long-time

behaviour of the distribution ofX-clusters is characterized by a single maximum in aggregation
space (r) which moves to largerr-values and spreads out as time progresses.

Finally, for consistency, we need to verify the underlying assumption thatC1 → 1 as
t3 → ∞. From (3.37), ast3 → ∞, NX ∼ t

−1/2
3 andcX2 ∼ t−3/2. Now cY2 asymptotes to

anO(ε) constant; and in the large-time limit, the distributioncYr becomesO(ε), and decays
rapidly enough inr for NY to beO(ε) also. Thus the dominant term in (3.18) ast3 → ∞ is
NX, implyingC1→ 1 as originally assumed.
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Over this timescale, the greater thermodynamic stability ofX over Y has taken effect,
with the consequence that there is little mass left in theY -form. However, the population
of X-clusters has not yet reached equilibrium, so kinetics now proceed over an even longer
timescale.

3.3.3. General case:a > b. The analysis for this case follows the above general case
very closely, withX and Y swapping roles and the thermodynamic stability ofY being
manifest through the loss of nearly all of theX-clusters. We formulate the problem for
the timescalet3, but the resulting equations can only be solved in the large-t3 limit. The
monomer concentration, given by (3.18), decreases, ascX2 , c

Y
2 becomeO(ε). At larger times,

b/a < C1 < 1, and (3.31) implies the growth of%
Y

at the expense of%
X
. In the limit t3→∞,

we thus expectC1→ b/a < 1 withNX → 0. These assumptions will be verified later.
The concentrationscXr all tend to zero ast3 → ∞. Their subsequent evolution to

equilibrium also occurs on thet3 = εt = O(1) timescale with the scalingscXr = εCXr
andCXr = O(1) leading to

dCXr
dt3
= b

a
CXr−1− CXr −

b

a
CXr +CXr+1. (3.38)

Thus ast3→∞, cXr → ε(b/a)r . Over large times, theY -distribution becomes slowly varying
in aggregation number (r), so the continuum limit

∂cY

∂t3
= 1

2
(b + aC1)

∂2cY

∂r2
+ (b − aC1)

∂cY

∂r
(3.39)

can be taken. SinceC1→ b/a, the advection term disappears enabling (3.39) to be solved by
the similarity solution

cY = %re−r
2/4bt3

4
√
π(bt3)3/2

. (3.40)

Thus in the large-time limit, the majority of mass is contained withincY in a single-peaked
distribution, the position of which moves to increasingly large aggregation numbers; there is
negligible mass in theX-morphology.

All that remains for us to do now is to verify the initial assumptions; namely to show that in
the large-time limit, (3.18) impliesC1 asymptotes tob/a. From (3.40), we haveNY ∼ t−1/2

3 and
cY2 ∼ t−3/2

3 in the large-time limit. We also havecX2 becomingO(ε) over this timescale, as does
NX, since all thecXr approach equilibrium. Thus in the large-time limit,NY dominates (3.18),
andC1→ b/a.

3.4. t = O(ε−2)

At the end of the previous timescale, which ever subcase our system falls into, all the
concentrations became small, so the scalings in this timescale must take account of this. We
introduce the new scalings

cXr = εCX cYr = εCY t = ε−2t4 (3.41)

to complement the existingc1 = εC1.

3.4.1. Special case:a = b. We have already seen that the scaled monomer concentration
C1 = c1/ε approaches unity at the end of the previous timescale. In order to develop the
longer-time kinetics we need the next-order correction term

C1 = 1 + ε1/2D1 (3.42)
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so thatc1 ∼ ε + ε3/2D1(t4).
Over the previous timescale, there was anO(1)mass in bothX- andY -forms: the matter

in the system was spread over a wide range of aggregation numbers, each cluster size having
a small concentration. Our primary concern in this timescale is with asymptotically large
aggregation numbers, and in order to balance terms in the determining equations, we take
r = ε−1/2z with z = O(1). Since the concentrations vary slowly with aggregation number, it
is valid to take the continuum limit

∂CX

∂t4
= ∂2CX

∂z2
−D1(t4)

∂CX

∂z
1

a

∂CY

∂t4
= ∂2CY

∂z2
−D1(t4)

∂CY

∂z
.

(3.43)

There is a simpler ‘inner’ region, forr = O(1) characterized at leading order by the equations

0= CXr−1− 2CXr +CXr+1 0= CYr−1− 2CYr +CYr+1 (3.44)

with solutionsCXr = 1 + (r − 1)K̃4X, CYr = 1 + (r − 1)K̃4Y . At large-r, this must match with
the small-z solution of (3.43). In order to close the system of equations, we need to specify
D1. This is obtained by requiring density to be conserved. At leading order the density is
given by% = ∫∞0 z(CX +CY )dz. Taking the time-derivative of this, and using (3.43), leads to

D1(t4) = −(1 +a)

/∫ ∞
0
CX(z, t4) + aCY (z, t4)dz. (3.45)

The system (3.43) together with (3.45) cannot be solved for arbitraryt4, but the large-time
kinetics can be found. Ast4→∞, the system converges to a time-independent state; in order
to satisfy the boundary conditionsCX,CY → 0 asz→∞, this solution must have the form

CX → K4X exp(D1z) CY → K4Y exp(D1z) D1→ D1 < 0 as t4→∞.
(3.46)

This solution has three parameters still to be specified,K4X,K4Y ,D1. The first two are found
by matching the above solution to the ‘outer’ problem to the solution of the ‘inner’ discrete
problem. In order to match the solution of the inner problem (3.44) with the outer solution,
K4X = 1 = K4Y and K̃4X = 0 = K̃4Y . Finally, we are in a position to determine the
value of the final parameter from (3.46),D1. Density conservation impliesD1 must satisfy
% = 2

∫∞
0 z exp(D1z)dz, givingD1 = −

√
2/% and hence the large-time asymptotic solution

is

c1 = ε − ε3/2
√

2/% cXr = cYr = ε exp
(
−r
√

2ε/%
)
. (3.47)

3.4.2. General case:a < b. At the end of the previous timescale, the number ofY -clusters
decayed, with the distribution ofX-clusters being given by the similarity solution (3.37),
subject toc1 = εC1 = ε. Here, in order to determine theX-cluster distribution function
we shall again need the first correction term to the monomer concentration, which has the
form C1 = 1 + ε1/2D1. Since the leading-order term inC1 does not alter over this timescale,
the solution (3.35) for theY -clusters remains valid throughout this timescale. Thus we only
consider theX-clusters in this section, theY -clusters already being at equilibrium.

ForX-clusters withO(1) aggregation numbers, the scalings (3.41) imply the governing
equations

0= CXr−1− 2CXr +CXr+1 (3.48)

with solutionCXr = 1 + (r − 1)K̃4X, whereK̃4X is an arbitrary constant to be determined by
matching to the solution of the outer problem. Clearly this solution cannot be valid for allr.
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If K̃4X < 0 then the concentration would become negative at some larger, and if K̃4X > 0
then the density would be divergent. Thus there must be a large-r region where other terms
enter the leading-order balance of terms in the governing equations. This can also be deduced
from the form of the similarity solution (3.37).

We continue to use the continuum limit, following its use at the end of the previous
timescale, but now need to find the cluster size where kinetics are occurring. Balancing terms
in the continuum equations yieldsr = ε−1/2z with z = O(1) and

∂CX

∂t4
= ∂2CX

∂z2
−D1(t4)

∂CX

∂z
. (3.49)

The quantityD1(t4) is obtained by requiring the density to be conserved. The leading-order
contribution to the density comes from the outer region, whence the above scalings imply
% = ∫∞0 zCX(z, t4) dz. Taking the time derivative of this, and using (3.49), leads to

D1(t4) = −1

/∫ ∞
0
CX(z, t4)dz. (3.50)

Unfortunately, systems such as this cannot be solved explicitly, but their large-time
behaviour can be found. AssumingD1→ D1 ast4→∞, we findCX = K4X exp(D1z), and
matching this solution in the limitz→ 0 to the solution of (3.48) in the limitr →∞ yields
K̃4X = 0 andK4X = 1. Conservation of density then givesD1 = −1/

√
%. Thus the solution,

over this timescale, tends to

c1 = ε − ε
3/2

√
%

cXr = ε exp

(
−r
√
ε

%

)
(3.51)

together withcYr = εCYr , whereCYr is given by equation (3.35).

3.4.3. General case:a > b. The leading-order kinetics which occur over this timescale
is the redistribution of mass within theY -distribution from the similarity solution (3.40) to
equilibrium. The monomer concentration remains constant at leading order, which implies that
the distribution ofX-cluster remains constant also, and continues to be given bycXr = ε(b/a)r
since it was already in equilibrium with the monomer concentration at the end of the previous
timescale. In order to determine the evolution of theY -cluster distribution, we need a higher-
order term in the monomer concentration, thus

C1 = b

a
[1 + ε1/2D1(t4)]. (3.52)

For small cluster sizes (r), the leading-order determining equations forCYr are

0= bCYr−1− bCYr − bCYr + bCYr+1 (3.53)

together withC1 = b/a, which are solved byCYr = b/a + K̃4Y (r − 1). At largerr, however,
higher-order terms become relevant. Seeking a large-r region where other terms enter the
leading-order balance leads tor = ε−1/2z with z = O(1), then

∂CY

∂t4
= b∂

2CY

∂z2
− bD1(t4)

∂CY

∂z
. (3.54)

HereD1 is determined by conservation of density (% ∼ ∫∞0 zCY (z, t4) dz), giving

D1(t4) = −b/a
∫ ∞

0
CY (z, t4)dz. (3.55)

Unfortunately, a full solution cannot be determined, so we are once again forced to consider
only the large-time asymptotics of this timescale. At large times (3.54) impliesCY →
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(b/a) exp(D1z), with D1 → D1 < 0 as t4 → ∞. Equating the density of this solution
to % then impliesD1 = −

√
b/a%. This outer solution matches correctly into the solution of

the inner problem withK̃4Y = 0. This is the equilibrium solution of the entire system and
agrees with the equilibrium solution derived from the discrete equations, as will be shown in
the next section.

3.5. Equilibrium

Sections 1 and 2 discussed the form of the equilibrium solution for arbitrary choices of the
coefficientsar, br . Here, since we have fixed forms for these coefficients, we can be more
explicit about the equilibrium solution. We continue to use partition functions, now defining
them explicitly, by

QX
r = ε1−r QY

r =
(
bε

a

)1−r
. (3.56)

The monomer concentrationc1 at equilibrium depends on the total density in the system.
Expanding the monomer concentration asc1 = εC1(1 + εpD1), we find an equation relating
the density toc1 from (2.3):

% = εC1(1 + εpD1)

[
1

(1− C1− εpC1D1)2
+

1

(1− a
b
C1− a

b
C1εpD1)2

]
. (3.57)

An expansion of this expression in powers ofε yields% = O(ε) unlessC1 = 1 orC1 = b/a.
Thus forO(1) values of%, we expectC1 to take on one of these values.

3.5.1. Special casea = b. In the special casea = b, the leading-order monomer
concentration (c1) can only tend toε (that isC1 = 1). Since the density is thenO(ε1−2p), for
% = O(1) we must havep = 1

2: the correction term is thenO(ε3/2). Thus we put

c1 ∼ ε(1 +D1
√
ε) (3.58)

which, withQX
r = QY

r = ε1−r gives the equilibrium solutions ascXr = cYr = ε(1 +D1
√
ε)r .

Equating the density in this equilibrium solution to% yieldsD1 = −
√

2/% as the leading-order
solution of

% = 2(1 +D1
√
ε)(1 +D2

1ε)

D2
1

+ ε +D1ε
3/2. (3.59)

The solution is thuscXr = cYr = ε(1 − √2ε/%)r , which agrees with (3.47) in the large-r
limit. All a-dependence has disappeared from this expression, as is to be expected for the
equilibrium solution, sincea corresponds to the timescale over which the concentrations of
Y -clusters evolve.

3.5.2. General casea < b. If a 6= b then there are two similar subcases to consider: (i)
a > b; (ii) a < b. In this latter case,C1 = 1, since ifC1 = b/a then the concentration of
X-clusters is unbounded at larger.

Definingc1 = ε +D1ε
3/2 with QX

r = ε1−r andQY
r = (aε/b)1−r leads to

cXr = ε(1 +D1
√
ε)r cYr = ε

(a
b

)r−1
(1 +D1

√
ε)r . (3.60)

Thus all concentrations are small, but those of typeY decay much faster with increasing
aggregation number (r) than those of theX-type. The net effect is that the mass inY -form is
only aε(2b − a)/(b − a)2, whereas the mass in theX-form isO(1), so that to leading-order
in ε all mass is of theX-type andD1 = −1/

√
%.
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3.5.3. General casea > b. The casea > b is handled in a similar manner, with the roles of
X andY reversed. Nowc1 = bε/a +O(ε3/2), since ifc1 = ε +O(ε3/2) then theY -distribution
would diverge in the large-r limit. The equilibrium solution is

cXr = ε
(
b

a

)r (
1−

√
bε

a%

)r
cXr = ε

(
b

a

)(
1−

√
bε

a%

)r
c1 = bε

a

(
1−

√
bε

a%

)
(3.61)

the majority of the mass ending up in theY -form.
Thus in all cases, the scalings are the same in magnitude, namelycr = O(ε), but the

special casea = b (3.58) is not simply a subcase of the general results (3.60) or (3.61).

3.6. Summary of results from asymptotic analysis

The asymptotic solution passes through four timescales. In the first, clusters of both types
grow at the expense of the monomer: this timescale ends when the monomer concentration
becomes small and thus slows the growth of clusters. There are no effects of fragmentation
in this timescale; many clusters form, the vast majority having relatively small aggregation
numbers—typically up to ten. In the second timescale, which is shifted to larger times, but as
fast as the first, the monomer concentration slows its decrease, and saturates at a small (O(ε))
size. This stabilization of the monomer concentration is due to the fragmentation of clusters.
However, since all other concentrations areO(1) fragmentation it is still small enough that it
does not alter the leading-order concentrations of the clusters; thus they all retain their values
from the end of the first timescale.

The third timescale is genuinely slower; fragmentation now affects the leading-order
cluster concentrations. Mass is passed from one cluster type to the other by the fragmentation
of clusters to monomers which are then used in the growth of clusters of the other
type. Clusters now grow to much larger sizes, and consequently the concentration of
any particular individual size becomes smaller. Throughout this process the monomer
concentration remainsO(ε), and there is anO(1) amount of mass to be transferred from
one morphology to the other through the monomeric form: thus we expect this timescale
to be t = O(ε−1), as indeed it is. The monomer concentration relaxes to its ‘quasi-
equilibrium’ value onO(1) timescale, thus can always be assumed to be at this value as
given by (3.18). Finally, there is an even longer timescale (t = O(ε−2)) in which all
concentrations are small (O(ε)) and the cluster distribution converges to its equilibrium
shape.

3.7. Results from numerical solution of the full system

The full system of equations (3.1) has been solved numerically using a predictor–corrector
scheme with timesteph small enough to always satisfyh 6 ε/10; simulations for a variety of
parameter values have been carried out, and a range of stepsizes were tested to ensure that no
numerical artifacts were present in the solution. Results for the casea = 2.5,b = 5,ε = 10−2,
% = 1 are presented here. For this choice of parameter, sincea > 1 we expect clusters of
typeY to nucleate in greater abundance initially, but typeX to dominate the system at later
times sincea < b. Figure 2 gives three snapshots showing the shape of cluster distributions
for both morphologies at the three timest = 10, t = 100 andt = 1000. Att = 10, clusters
of typeY are seen to dominate (cYr > cXr ) at all aggregation numbers; at timet = 100, type
X dominates at small sizes (cX2 > cY2 andcX3 > cY3 ) but at all larger aggregation numbers
typeY is still predominant (cYr > cXr ); and by timet = 1000, clusters of typeX dominate
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Figure 2. Plots ofcXr , c
Y
r againstr at t = 10, 100, 1000 for the case witha = 2.5, b = 5.0,

ε = 0.01,ρ = 1.0.

the entire system (cYr < cXr for all r). Thus, we observe typeY dominating at small times,
due to its larger nucleation rate, but the greater thermodynamic stability of typeX becomes
evident at later times. Thus, our initial expectations were correct: at intermediate times the
greater stability of clusters of typeX becomes evident firstly in small clusters and later in
larger clusters.

In figure 3 the monomer concentration is shown as a function of time on a log–log plot
along with the total number of clusters of each type (NX(t), NY (t)) and the mass in each
cluster morphology (%

X
(t),%

Y
(t)). The monomer concentration is seen to decay monotonically

throughout the process. Initially, all of the variablesNX,NY , %X , %Y grow and saturate around
t ≈ 1, withNY (t) > NX(t) and%

Y
(t) > %

X
(t). There then follows a fairly slow evolution

of the concentrations; this is the third asymptotic timescale (t = O(ε−1)) over which mass
is slowly passed from one morphology to the other. The inequalities cease to be valid after
t ≈ 200, whereNY < NX and%

Y
< %

X
. Around this switchover, bothNY and%

Y
decrease,

whilst %
X

increases andNX fluctuates without growing much larger. Thus the average size
of X-clusters (%

X
/NX) increases in over this timescale. Equilibrium is reached after about

t = 104 = ε−2 as expected.
Figure 4 is a phase plane plot of%

Y
against%

X
the trajectory being parametrized byt

starting from%
X
= %

Y
= 0 att = 0. In the initial, fast, phase of the nucleation process,%

X
(t)

and%
Y
(t) increase in direct proportion to each other. This ceases at%x ≈ 0.25,%y ≈ 0.7 where

the nonomer concentration has become small (c1 = % − %
X
− %

Y
= O(ε) whereε = 0.01

and% = 1). The trajectory then turns a corner and%
X

continues to increase, albeit much more
slowly, and now with a corresponding reduction in%

Y
(t), until equilibrium is achieved (where

%
X
= %−O(ε) and%

Y
= εa(2b− a)/(b− a)). The trajectory clearly follows closely the line

%
X

+%
Y
= 1, the distance below it being the monomer concentration. The dashed curve which

remains close to the origin is a plot ofNY againstNX; this also shows the distinction between
the first timescale where both types of cluster grow rapidly, and the later slow timescales where
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Figure 3. Log–log plots ofNX,NY , %X , %Y , c1 againstt for the case witha = 2.5, b = 5.0,
ε = 0.01,ρ = 1.0.

Figure 4. Plots of%
Y

against%
X

andNY againstNX for the case witha = 2.5,b = 5.0, ε = 0.01,
ρ = 1.0.

clusters of typeY are broken up to release material for the growingX-clusters. Again we note
that in the later stages of the processNX remains approximately constant and thus the growth
in the mass ofX-clusters (%

X
) is due to a growth in their size.
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Figure 5. Diagrammatic summary of the coarse-graining contraction applied to the full model of
competitive nucleation.

4. Coarse-grained contraction

Equations (2.2) are amenable to a coarse-graining contraction procedure similar to that derived
in other generalizations of the Becker–Döring equations [15, 18]. In this case, we define two
coarse-grained grids with mesh spacings which may be non-uniform and are allowed to be
different for theX- andY -clusters. We define the mesh for theX-clusters by3n and that
for theY -clusters by4n. Since the monomer concentration cannot be eliminated from the
scheme, we specify31 = 1= 41. The meshes are then defined by

3n = (n− 1)λ + 1 4n = (n− 1)ξ + 1. (4.1)

We eliminate all the concentration variablescXr except those which correspond tor = 3n

and eliminate all thecYr except those corresponding tor = 4n. We then relabel the retained
concentrations bysXn = cX3n and sYn = cY4n . This procedure, withλ = 3 andξ = 4, is
summarized in figure 5. The monomer concentration in the original formulation (c1) must
be identical to that in the reduced scheme, thuss1 ≡ c1. The kinetic equations for the new
concentrationssXn , s

Y
n are then given by

ṡXn = LXn−1− LXn LXn = αXn sXn sλ1 − βXn+1s
X
n+1

ṡYn = LYn−1− LYn LYn = αYn sYn sξ1 − βYn+1s
Y
n+1

ṡ1 = −λLX1 − ξLY1 −
∞∑
n=1

λ2LXn −
∞∑
n=1

ξ2LYn

(4.2)

where the constantsαXn , αYn , βXn , βYn are given by

αXn = T XaX3naX3n+1 . . . a
X
3n+1−1 βXn+1 = T XbX3n+1b

X
3n+2 . . . b

X
3n+1

αYn = T Y aY4naY4n+1 . . . a
Y
4n+1−1 βYn+1 = T Y bY4n+1b

Y
4n+2 . . . b

Y
4n+1

(4.3)

and whereT X, T Y represent constants. In the case of constant coefficients and a uniform
mesh, it has been shown in [18] that the optimum choice for the constantsT X, T Y is

T X = aXc1− bX
λ[(aX)λcλ1 − (bX)λ]

T Y = aY c1− bY
ξ [(aY )ξ cξ1 − (bY )ξ ]

(4.4)

but for an arbitrary mesh and size-dependent rate constants the best choice forT X, T Y is not
clear.

The system of equations (4.2) can be shown to possess the same properties as the original
system; we simply quote the results here:
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• A unique equilibrium solution generated from the partition functionsQX
r , QY

r , namely
sXn = QX

3n
s
3n
1 , sYn = QY

4n
s
4n
1 . The properties which enable the partition functions to

generate an equilibrium solution for the contracted system of equations as well as for the
full are

αXn Q
X
3n
= βXn+1Q

X
3n+1

αYn Q
Y
4n
= βYn+1Q

Y
4n+1

(4.5)

together withQX
31
= 1= QY

41
.

• A conserved quantity, referred to as the density,% = s1 +
∑∞

n=2(λ3ns
X
n + ξ4nsYn ).

• A Lyapunov function, V = s1(logs1 − 1) +
∑∞

n=2{λsXn (log(sXn /Q
X
3n
) − 1) +

ξsYn (log(sYn /Q
Y
4n
)− 1)}.

• A set of identities; for any pair of sequences{gn}∞n=1, {hn}∞n=1 with g1 = h1

g1ṡ1 +
∞∑
n=2

(gnṡ
X
n + hnṡ

Y
n ) = (g2 − λ(λ + 1)g1)L

X
1 + (h2 − ξ(ξ + 1)g1)L

Y
1

+
∞∑
n=2

(gn+1− gn − λ2g1)L
X
n +

∞∑
n=2

(hn+1− hn − ξ2g1)L
Y
n . (4.6)

Thus the coarse-grained contraction has been generalized to construct a mesoscopic or
macroscopic model from the original microscopic model derived in section 2.

4.1. Truncated system

In going from the full Becker–D̈oring system from equations (1.3)–(1.5) to the ‘reduced’
system (4.2) we have replaced one infinite system of equations by another. It is not until we
truncate the system at some finite (but potentially large) aggregation number that we find a
gain in efficiency.

There are two natural ways of truncating the normal Becker–Döring system of equations;
one method maintains the conservation of density

% =
R∑
r=1

rcr (4.7)

by not allowing clusters larger than sizer = R to form. This yields

ċR = JR−1 (4.8)

in addition to (1.3)–(1.5) (with (1.3) only holding for 26 r 6 R−1) for the system of variables
{cr(t)}Rr=1. A second truncation method allows the Becker–Döring model of nucleation to be
combined with another model for the subsequent growth of clusters. In this model mass can
pass out of the ‘top’ of the system through the formation of clusters of sizer = R + 1; hence,
we have

ċR = JR−1− aRc1cR + f (4.9)

wheref represents a source ofR-clusters due to the fragmentation of larger clusters as
described by another model for clusters of size greater thanR. Later, we shall concentrate on
the former truncation (4.8) both for simplicity, and because we can confirm that it retains the
structure of the Becker–D̈oring equations: namely, (i) it maintains a conserved quantity (the
density% =∑R

r=1 rcr ) which can be used as a check when carrying out numerical simulations;
(ii) it also has a unique equilibrium solution (cr = Qrc

r
1) generated by the partition function

(Qr ); and (iii) a Lyapunov functionV =∑R
r=1 cr(log(cr/Qr)− 1).
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Provided thatλ dividesR−1, the coarse-grained contraction procedure replaces a system
of R equations with a system ofM = 1 +(R−1)/λ equations, where (4.8) or (4.9) is replaced
by

ẋM = LM−1 or ẋM = LM−1− αMxλ1xM + φ (4.10)

respectively, whereφ allows the reduced Becker–Döring system to import mass from another
model which describes the growth and fragmentation of larger clusters.

In the system generalized for two-component nucleation, let us denote the largest aggregate
of typeX byRX and that of typeY byRY , then if(RX − 1)/λ = MX and(RY − 1)/ξ = MY

the coarse-graining procedure reduces the total system size fromRX +RY −1 toMX +MY −1.
The choice of the maximum cluster size, and the coarse-graining grid size which is used is
arbitrary. The process is an approximation, and choosing small grid sizes will keep errors
small; however, later we show that reasonable results can be obtained even with large grid
sizes. The benefit of using a coarse-grained model is that there are fewer parameters to be
determined. Whereas the full model hasRX+RY fluxes and so 2(RX+RY ) rate parameters to be
found, the reduced model has only 2(MX +MY). There are many physical effects influencing
which grid size is most appropriate in a particular example; in some situations the free energy
appears to have quasi-periodic oscillations superimposed on a smooth curve: this provides a
natural size scale, as illustrated in figure 2.3 of Lewis [13]. Other mechanisms which may
influence the choice of grid size are sizes where inhibition or catalysis becomes important, as
discussed in [15,17].

The generalizations of (4.8) and (4.9) to the two-component system are obvious; for (4.8)
it is relatively straightforward to check that the equilibrium solution issXr = QX

3n
s
3n
1 ,

sYr = QY
4n
s
4n
1 , where

αXn Q
X
3n
= βXn+1Q

X
3n+1

αYn Q
Y
4n
= βYn+1Q

Y
4n+1

QX
1 = 1= QY

1 (4.11)

and that this equilibrium solution is unique. It can also be verified that the density% =
s1 +

∑MX

n=2 λ3ns
X
n +

∑MY

n=2 ξ4ns
Y
n is conserved, and that

V = s1(logs1− 1) +
MX∑
n=2

λsXn

(
log

(
sXn

QX
3n

)
− 1

)
+
MY∑
n=2

ξsYn

(
log

(
sYn

QY
4n

)
− 1

)
(4.12)

is a Lyapunov function, and that the system of identities is

g1ṡ1 +
MX∑
n=2

gnṡ
X
n +

MY∑
n=2

hnṡ
Y
n = (g2 − λ(λ + 1)g1)L

X
1 + (h2 − ξ(ξ + 1)g1)L

Y
1

+
MX−1∑
n=2

(gn+1− gn − λ2g1)L
X
n +

MY−1∑
n=2

(hn+1− hn − ξ2g1)L
Y
n . (4.13)

A direct verification of the full model against experiments is not possible due to (i) the
large number of unknown rate coefficients, and (ii) difficulties in accurately determining the
concentration distribution profile from experimentally data: for example, determining the
concentrations of dimers (c2) as distinct from the concentration of trimers (c3), etc. However,
macroscopic quantities such as those appearing in the model above should be verifiable against
experimental results. Since there are potentially very few parameters present in this model, it
should be possible to deduce approximate values to them. The system (4.2) is a substantial
simplification of the original system, and provides a set of equations which are more amenable
to analysis.



8776 J A D Wattis

4.2. Almost maximally contracted system

As an example of the truncated system described above, let us consider a fairly extreme case
where there are only two types of each cluster retained. Thus our model has five concentration
variabless1, sX2 , sX3 , sY2 andsY3 which are determined by

ṡ1 = −λ(1 +λ)LX1 − λ2LX2 − ξ(1 + ξ)LY1 − ξ2LY2
ṡX2 = LX1 − LX1 LX1 = αX1 s1+λ

1 − βX2 sX2
ṡX3 = LX2 LY1 = αY1 s1+ξ

1 − βY2 sY2
ṡY2 = LY1 − LY2 LX2 = αX2 sλ1sX2 − βX3 sX3
ṡY3 = LY2 LY2 = αY2 sξ1sY2 − βY3 sY3 .

(4.14)

This system conserves density:

% = s1 + λ(λ + 1)sX2 + λ(2λ + 1)sX3 + ξ(ξ + 1)sY2 + ξ(2ξ + 1)sY3 (4.15)

and has a Lyapunov function,

V = s1(logs1− 1) + λsX2

(
log

(
βX2 s

X
2

αX1

)
− 1

)
+ λsX3

(
log

(
βX2 β

X
3 s

X
3

αX1 α
X
2

)
− 1

)
+ξsY2

(
log

(
βY2 s

Y
2

αY1

)
− 1

)
+ ξsY3

(
log

(
βY2 β

Y
3 s

Y
3

αY1 α
Y
2

)
− 1

)
. (4.16)

However, even the examination of this reduced system using analytical techniques is
challenging, and requires numerical methods for a detailed analysis. In the next section we
shall consider a further simplification, in which only three concentrations are retained.

4.3. Maximally contracted system

We shall now considerξ, λ large enough such that the system contains just three significant
concentrations, namelys1, sX2 andsY2 , and hence only three equations. Later, this will enable
greater analytical progress to be made in the solution of the equations. We now ignoresXr , s

Y
r

for r > 3, our assumption implying that the amount of these clusters made is negligible: thus
we ignoreLXr , L

Y
r for r > 2. Eliminating all but one concentration of each type of cluster in

this way yields

ṡX2 = αX1 s31 − βX2 sX2 ṡY2 = αY1 s41 − βY2 sY2
ṡ1 = −λ3αX1 s31 + λ3βX2 s

X
2 − ξ4αY1 s41 + ξ4βY2 s

Y
2

(4.17)

defining3 = λ + 1,4 = ξ + 1.
In the next section we apply this model to the coagulation-dominated case analysed earlier,

in the original formulation this corresponds toaXr , a
Y
r = O(1) andbXr , b

Y
r = O(ε). Following

the coarse-grained contraction we thus haveαX1 , α
Y
1 = O(1), βX2 = O(ελ), βY2 = O(εξ ). We

thus definep = ξ/λ, and a new small quantity,δ = O(ελ), so thatεξ = O(δp). To simplify
ensuing analysis we eliminate all subscripts from the model equations by replacings1 by s;
sX2 by u andsY2 by v. We work in a timescale such thatαX1 = 1, defineδ so thatβX2 = δ, and
then our model can be written as

u̇ = s3 − δu v̇ = αs4 − βδpv ṡ = λ3δu− λ3s3 + ξ4βδpv − ξ4αs4 (4.18)

for some constantsα, β. In practice, the rate constants in the full system of equations are
unknown; the ratesα, β will be assigned directly into the reduced equations. Thus, we ignore
the change of timescale (1.11) since this will automatically be accounted for in the assignment
of rates. In the next section we shall show that asymptotic and numerical solutions agree with
each other, and provide useful approximations to the kinetics observed in the solution of the
full system described in section 3.
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5. Analysis of macroscopic model

We have taken the large-λ and large-ξ limit of equations (4.2) so that only one type of cluster
of each type need be considered. Due to the possibility of different grain sizes (λ ≶ ξ ), there
are a number of cases to analyse:p > 1, p < 1, andp = 1. We start by analysing the final
case—where the mesh size is the same for clusters ofX-type as forY (3 = 4), and then move
on to the harder problem wherep > 1. The casep < 1 is very similar top > 1 so will not be
detailed separately here.

5.1. Equal mesh sizes

Since the system (4.18) has a conserved quantity,% = s +3u +4v, it is further reducible. If
we make the two coarse-graining parameters equal (3 = λ + 1= 4), then the rate equations
become

u̇ = −δu + [% − λ3(u + v)]3 v̇ = −βδv + α[% − λ3(u + v)]3 (5.1)

and both occurrences ofδ are of the same order of magnitude.

5.1.1. t = O(1). In the first timescale, bothu andv areO(1) and evolution occurs on the
given timescalet = O(1). The leading-order equations can be solved by notingdv

du = α with
v(0) = 0= u(0) thusv = αu, and

u = %

λ3(1+α)

(
1− 1

[1 + λ23(1 +α)%λt ]1/λ

)
v = %α

λ3(1 +α)

(
1− 1

[1 + λ23(1 +α)%λt ]1/λ

)
.

(5.2)

Over this first timescale the concentrations of the two species increase in a similar fashion,
remaining proportional to each other. As time progresses the rate of increase slows, but the
solution is oblivious to the equilibrium configuration, and the fragmentation ratesβ, δ. The
solution ceases to be valid due to the exhaustion of the monomer: new terms enter the leading-
order balance whens = O(δ1/3). This implies% − λ3(u + v) ∼ δ1/3 which occurs when
t ∼ δ−λ/3. At this point, a new timescale is necessary.

5.1.2. t = O(δ−λ/3). Insertingt = δ−λ/3t2 with t2 = O(1) into (5.2), yields

u ∼ 1

λ3(1 +α)

(
% − δ1/3

[λ23(1 +α)t2]1/3

)
and

v ∼ 1

λ3(1 +α)

(
α% − δ1/3α

[λ23(1 +α)t2]1/3

)
as t2→ 0.

(5.3)

Thus, we use the new variablesu2, v2 given by

u = % − δ1/3u2

λ3(1 +α)
v = α% − δ1/3αv2

λ3(1 +α)
. (5.4)

The equations foru2(t2), v2(t2) are then

du2

dt2
= % − λ3(u2 + αv2)

3

(1 +α)λ
dv2

dt2
= β% − λ3(u2 + αv2)

3

(1 +α)λ
. (5.5)

This system can be solved by transforming to the new variablesy2 = v2−u2 andx2 = u2+αv2:
then the equation fory2 can be integrated immediately, toy2 = (β − 1)%t2 since at the start of
this timescaley2 = 0. The equation forx2 is

dx2

dt2
= %(1 +αβ)− λ3x32

(1 +α)λ−1
(5.6)
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which cannot be explicitly integrated. By matching with the first timescale we see that
x2 ∼ (1 +α)λ/3/(λ23t2)

1/3 ast2 → 0. Equation (5.6) shows thatx2 continues to decrease,
and asymptotes to [%(1 +αβ)(1 +α)λ−1/λ3]1/3 ast2→∞.

Over this second timescale the concentrations of the two species diverge linearly with one
growing at the expense of the other. This is seen from the growth ofy2 for β > 1, and decrease
if β < 1. In the former caseu increases whilev decays, whereas ifβ < 1 theny2 is negative
and decreases, giving growth ofv and consequent loss ofu. These processes occur over a
much slower timescale than the initial kinetics.

5.1.3. t = O(δ−1). The second timescale ceases to be valid due to the increase iny2. When
t2 ∼ δ−1/3, y2 ∼ δ−1/3 and another term from the determining equations enters the balance.
Thus, in the third timescale we work witht3 = δt , x3 = x2 andy3 = δ1/3y2:

dy3

dt3
= %(β − 1)− (α + β)y3

(1 +α)
(5.7)

0= %(1 +αβ) +
α(1− β)y3

(1 +α)
− λ3x33

(1 +α)λ−1
. (5.8)

The time derivative ofx3 does not appear at leading order, thusx3 is slaved toy3. Since
equation (5.7) fory3 is linear, its solution is easily found:

y3 = %(β − 1)(1 +α)

(α + β)

[
1− exp

(−(α + β)t3
(1 +α)

)]
. (5.9)

The quantityx3 can then found from the algebraic equation (5.8). However,x3 represents a
higher-order correction to the concentrationsu, v, so does not affect the leading-order results:

u = %

λ3(1 +α)

[
1 +

α(β − 1)

(α + β)

{
1− exp

(−t3(α + β)

(α + 1)

)}]
(5.10)

v = %α

λ3(1 +α)

[
1− (β − 1)

(α + β)

{
1− exp

(−t3(α + β)

(α + 1)

)}]
. (5.11)

In this solution, the constant of integration has been determined by matching the solution back
into the previous timescale, a procedure which shows that ast3 → 0, y3 ∼ (β − 1)%t3. The
large-time limit behaviour of both the variablesu andv is a monotone approach to the constants

u→ β%

λ3(α + β)
v→ α%

λ3(α + β)
as t3→∞. (5.12)

Over this timescale the concentrations approach their equilibrium values on an even slower
timescale than the evolution of the second timescale. The complex structure of the approach to
equilibrium in the system (5.1) can be seen from the equations themselves. At leading order,
a straightforward search for equilibrium states yields a one-parameter family

u = ϕ v = %

λ3
− ϕ for 06 ϕ 6 %

λ3
. (5.13)

This provides the reason for the longer timescales in the above analysis. Over the first timescale
the system evolves to one member of this one-parameter family (5.13); then over the second
timescale, the trajectory smoothly turns around, and over the third timescale the system moves
through this family until it reaches the one member which is a genuine equilibrium solution,
i.e. the state which is an equilibrium when all higher-order terms are included (as well as just
the leading-order terms).
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5.2. Different mesh sizes

The system of equations we aim to solve is (4.18). We now consider the case whereξ > λ

giving p = ξ/λ > 1; thus the fragmentation rate ofv is much smaller than that ofu, leading
to an equilibrium configuration in whichv dominatesu. At equilibrium, to leading order in
δ � 1, the concentrations take on the values

s ∼
(
β%

αξ4

)1/4

δξ/λ4 u ∼
(
β%

αξ4

)3/4
δ(ξ−λ)/λ4 v ∼ %

ξ4
. (5.14)

However, at early times, before the effect of fragmentation becomes important, the size ofu

andv will be comparable, and ifα < 1 then, at early times, the concentrationu will exceed
that ofv. Thus, at intermediate times we observe concentrations which are wholly unrelated
to the equilibrium properties of the system. We now make this argument formal by solving
the system (4.18) using matched asymptotic expansions.

5.2.1. t = O(1). Initially, the system responds on a timescale ofO(1), where all of the
concentrationsu, v ands take onO(1) values, withs decaying from%. To leading order, on
this timescale, the concentrations evolve according to the equations

u̇ = s3 v̇ = αs4 ṡ = −λ3s3 − αξ4s4. (5.15)

Unfortunately, these cannot be solved explicitly, as those in the casep = 1 were. But it
is possible to determine the large-time asymptotics solutions wheres → 0. As t → ∞,
ṡ ∼ −λ3s3 giving s ∼ 1/(λ23t)1/λ, u̇ = O(t−3/λ) andv̇ = O(t−4/λ). Thus,

u→ u1∞ and v→ v1∞ as t →∞ (5.16)

for some constantsu1∞, v1∞. In order to satisfy density conservation, these two constants
must satisfy% = λ3u1∞ + ξ4v1∞. Thus, over this timescale, both concentrationsu andv
grow according to the nonlinear equations (5.15), using up, to leading order, all of the available
resources of monomer. The decline in monomer concentration is halted by the re-emergence
of fragmentation in the limitt →∞, necessitating the introduction of a new, longer timescale.

5.2.2. t = O(δ−λ/3). Sincep > 1, it is the fragmentation term in theu equation in (4.18)
which becomes significant first. This occurs whens3 ∼ δ, implying t = O(δ−λ/3). Thus, the
new timescale we define ist2 = δλ/3t , and over this timescales = δ1/3s2 with s2 = O(1). To
leading order, the concentrationsu andv areO(1) constants at the end of the first timescale;
in the second we allow time-dependent variations around this constant by writing

u = u1∞ + δ1/3u2 v = v1∞ + δ(4−λ)/3v2. (5.17)

The leading-order equations are then

ds2
dt2
= λ3u1∞ − λ3s32

du2

dt2
= s32 − u1∞

dv2

dt2
= αs42 . (5.18)

Thus, over this timescale, the system tends to the configuration

s → δ1/3u
1/3
1∞ u→ u1∞ + δ1/3u2∞ v→ v1∞ + δ4/3αu4/31∞ t (5.19)

for some constantu2∞. The decline in monomer concentration ceases and asymptotes to
anO(δ1/3) constant. The concentrationsu and v undergo minor modifications, with the
modification inu tending to a constant, the first correction term inv growing linearly. Since to
leading-order all concentrations are constant, and yet the system is not at, or near, equilibrium,
further, even longer, timescales are required to analyse the decay of this metastable state, and
the genuine approach to equilibrium.
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5.2.3. t = O(δ−4/3). The growth of the correction termv2 in (5.19) to the concentration
v is unsustainable whilst both of the other concentrations remain constants. At larger times,
density conservation will prevent such a solution persisting: in particular, on a timescale of
t = O(δ−4/3). The scalings we now investigate are thus

t3 = δ4/3t s = δ1/3s3(t3) u = u3(t3) = O(1) v = v3(t3) = O(1). (5.20)

The leading-order determining equations are

% = λ3u3 + ξ4v3 0= s34 − u4
dv4

dt4
= αs44 (5.21)

where the equation for conservation of density has been used in place of the differential equation
for s. These can be rearranged to show thatu3 satisfies du3/dt3 = −ξ4αu4/33 /λ3, which is
solved by

u3 = 1

[u−(4−3)/31∞ + αξ4(4−3)t3/λ32]3/(4−3)
(5.22)

with the solutions forv3, s3 following immediately by

s3 = u1/3
3 v3 = % − λ3u3

ξ4
. (5.23)

This solution describes the relaxation of the metastable state since it is over this timescale that
the concentrationudecays from being ofO(1) to being small. During this timescale, the cluster
concentrationu is in equilibrium with the monomer concentrations. However, monomers are
continually combining to increase the concentration of thev-morphology, causingu ands to
decrease monotonically. At large times the above solution ceases to be valid, since the decay
of u is accompanied by a decay in the monomer concentration (s), and whens = O(δξ/λ4)
the fragmentation ofv becomes significant.

5.2.4. t = O(δ−(pξ+1)/4). At the end of the previous timescale, (5.22) and (5.23) imply
thatv → %/4; thusv reaches its leading-order equilibrium value at the end of the previous
timescale and only undergoes small modifications in this fourth timescale. The fragmentation
of v becomes relevant whent3 = O(δ−(4−3)2/λ3), which implies that the new timescale is
determined byt = δ−(pξ+1)/4t4 with t4 = O(1). On this timescales = δp/4s4, u = δ(p−1)/4u4

andv = %/ξ4− δ(p−1)/4v4. The leading-order equations for these quantities are then

0= λ3u4 − ξ4v4 − dv4

dt4
= αs44 −

β%

ξ4
0= s34 − u4. (5.24)

Here the monomers (with concentrations) equilibrate with the dominant cluster morphology
(v) through a term representing the fragmentation ofv-clusters, the first timeβ has entered
our analysis. The system (5.24) is solved by

t4 =
∫ ∞
ξ4v4
λ3

λ3 dx

αξ4x4/3 − β% u4 = ξ4v4

λ3
s4 = u1/3

4 . (5.25)

Over this timescale, the solution reaches equilibrium since the leading-order large-time
asymptotics of this solution agree with the previously described equilibrium solution (5.14).
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Figure 6. Plots of s, u, v againstt for the maximally contracted case withα = 4, β = 8,
δ = 0.0001,ρ = 1.0, λ = 9, ξ = 12.

5.3. Results from numerical solution of the reduced system

The maximally contracted system of equations (4.18) has been solved numerically (again
using a predictor–corrector scheme with timesteph < δ/10), and results for the caseα = 4,
β = 8, δ = 10−4, λ = 9, ξ = 12, % = 1 are presented here. Figure 6 shows a log–log
plot of the concentrations of the two cluster types and the monomer source against time.
The initial growth of both cluster types is seen to slow as the monomer becomes exhausted,
and the eventual overtaking ofv(t) by u(t) occurs att ≈ 5; after this the concentrationu
continues to increase at the expense ofv, through the fragmentation ofv to monomers and
subsequent aggregation of monomer to form more larger clusters of typeu. Figure 6 should
be compared with figure 3, where we observe a qualitatively similar shape of curves. The
differences in amplitude of the monomer concentration are due to the fact thatδ was only
taken to be 10−4, whereas a full comparison with the example shown in figure 3 would require
δ = ελ = 10−18. There are considerable problems in the numerical solution of systems with
such small parameters, hence such an extreme case was not attempted here.

Figure 7 shows a trajectory in(u, v) phase space:t = 0 corresponds to the origin
%
X
= 0 = %

Y
, both cluster types form, and a maximum inv occurs whenu ≈ 0.0025.

At this point the slow timescales are entered, and the system then slowly evolves down the
diagonal straight line, the monomer concentration being uniformly small from this point until
equilibrium is achieved, wherev is almost zero. This figure is analogous to figure 4 which
represents data from a numerical solution of the full problem.

The asymptotic results enable this behaviour to be described as occurring over four
timescales: over the first both cluster types grow and exhaust the supply of monomer. Over the
second, longer, timescale, fragmentation causes the monomer concentration to stabilize at some
small positive constant. During the third, even longer, timescale the monomer concentration
remains small while fragmentation now influences the cluster concentrations, causing mass to
pass from one less thermodynamically stable morphology to the more stable form. Finally,
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Figure 7. Plots ofv againstu for the maximally contracted case withα = 4, β = 8, δ = 0.0001,
ρ = 1.0, λ = 9, ξ = 12.

there is an even longer timescale over which equilibrium is reached, at equilibrium almost all
the mass is in one form, there being only asymptotically small amounts of monomer and of
the less stable cluster morphology.

6. Discussion

We have proposed a model for nucleation in which two morphologies of cluster are able to
form from a single type of monomer. Clusters of both structures grow according to classical
nucleation theory and, if we were to impose a constant monomer concentration then the growth
of each cluster-type would be independent of each other. However, we have considered the
more relevant and interesting case where the total concentration of material is kept constant:
this means that the two species of cluster compete for the finite amount of monomeric material
present within the system, and the relative growth rates of the two types of cluster then
become important in the kinetics of nucleation. By considering an aggregation-dominated
system we have been able to determine the form of the solution through the use of matched
asymptotic expansions. The structure of the solution has been found in the special case where
all aggregation and fragmentation rates are independent of cluster size.

Asymptotic analysis of the full model identifies a sequence of four timescales over which
the kinetics occur. The complexity of the problem precluded a full explicit form for the cluster-
distribution function being found, but approximations were derived in the matching regions.
During the first timescale fragmentation is negligible and sizable concentrations of both types
of cluster are formed, typically having small aggregation numbers. The number of clusters
formed depends solely on the aggregation rate, and not on the thermodynamic stability of
the clusters. The monomers are rapidly used up, and over a second timescale the monomer
concentration becomes, and stays small. During the third timescale, which is a slow timescale,
mass is transferred from the less thermodynamically stable to the more stable form through
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the fragmentation of the less stable clusters into monomers and the growth in size of the
more stable form of cluster. However, equilibrium is not reached over this timescale, since
the cluster-distribution function is given by a similarity solution and is constantly evolving.
Finally, over a fourth, even slower timescale, the system reaches its equilibrium configuration.
Over this timescale the distribution function for the more stable form satisfies a continuum
version of the Becker–D̈oring equations. The special case where the two morphologies are
equally stable has been analysed, and results are broadly similar to the general case, though
they cannot be obtained directly from it. The system of equations was then solved numerically
and for one choice of parameters the results were presented. The sequence of behaviour over
the timescales described above is seen in the numerical results also, confirming the validity of
the asymptotic expansions.

A coarse-graining contraction procedure was invoked and used to simplify the equations
by reducing the dimensionality of the system. When applied to a truncated version of our
modified Becker–D̈oring equations, a system of just three ordinary differential equations was
ultimately obtained. The simplified system was solved using matched asymptotic analysis
in two cases. In the first, the mesh size (or grain size) was taken to be the same for both
species of cluster. This gave kinetics which occurred on three timescales, an initial growth
in both morphologies, followed by a long timescale during which the concentrations changed
linearly, and a final slightly longer timescale over which the concentrations underwent slight
modifications to equilibrium. In the second case, the mesh sizes for the two species are
taken to be different. This leads to a situation in which one species dominates the other at
equilibrium. The kinetics in this case are more complex, there being four timescales through
which the system evolves. Initially, the species with the faster aggregation rate gains the larger
concentration, regardless of which is more thermodynamically stable. Although this may
appear obvious at the start of the reaction, the system passes through a long timescale before
the final equilibrium form of the solution starts to influence the kinetics of the reaction. This
sequence of events can also be clearly identified in the numerical solution of the equations.
If clusters of the more stable morphology have a smaller growth rate than clusters of the less
stable form then the less stable clusters will gain a greater concentration initially, and then
such a state will persist until the penultimate timescale—a surprisingly long time. The system
can thus be viewed as entering a metastable state in which the concentrations of both forms
of cluster are comparably large, and the monomer concentration is small. In this state no
concentration is near its final equilibrium value, yet evolution occurs on a slow timescale due
to the low concentration of monomers.

Thus we have elucidated some of the reasons for metastability in the process of nucleation
by considering a system in which two morphologies of solid can precipitate out from a
supersaturated solution or supercooled melt. Although inspired from classical nucleation
theory, our model does not require the solids to be crystalline: they could be gels, or amorphous
solids; such information would only affect the coagulation and fragmentation rate coefficients,
but not the form of the equations. A good example of such a system, in which two cluster types
can be formed from a single monomer type, are the chiral crystallization experiments conducted
by Kondepudiet al[10–12]. In these, an achiral monomer can nucleate to form one of two types
of crystal, namely a left- and a right-handed product. An explanation of the effects investigated
by Kondepudiet al requires secondary nucleation to be included in our model (in the manner
of [15]), and so falls beyond the scope of the current work but, in a future work, it is hoped
to generalize the model presented here to include nucleation by both primary (homogeneous)
and secondary means and present an investigation into the resulting system of equations.
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